

De-risking Strategies of Pancreatic Effects Induced by GI181771X, a Novel Cholecystokinin-1 Receptor Agonist for Obesity Indication

Chandi Elangbam, BVSc, MVSc, PhD, DACVP, DABT Director, Pathophysiology GlaxoSmithKline, Research Triangle Park, NC

> Fifth Conference of STP-India Oct 31 – Nov 2, 2014

- GI181771X (771) Background
- 771-Related pancreatic changes
 - **Molecular mechanism** of pancreatic responses
 - Species differences (rodents & nonhuman primates)
 - Clinical trial results (pancreatic screens)
- Rodents to humans translation

GI181771X (771) – Background

- **771** 1,5-Benzodiazepine & orally active
 - Cholecystokinin-1 receptor (CCK1R) agonist &
 - CCK-2 receptor (CCK2R) antagonist
- 771 Developed in late 90's for Anti-obesity indication
 - CCK1R's role in mediating "satiety" signal to central nervous system (i.e., centrally acting mechanism)

Cholecystokinin (CCK)

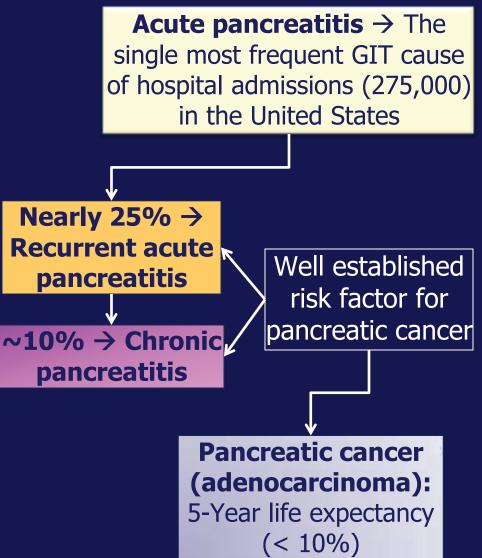
- CCK Peptide hormone, originally described as CCK-33 (33amino acid peptide)
 - Isoforms CCK-8, CCK-22, CCK-33, CCK-39 & CCK-58
 - CCK-8 \rightarrow Major active/transmitter isoform
 - CCK-58 \rightarrow Major intestinal isoform in rats & humans

CCK – Synthesized & secreted by

- Enteroendocrine I cells (duodenal & jejunal mucosa) → <u>Intestinal CCK</u> (secreted in response to fatty acids & proteins in the intestinal lumen)
- 2. Neurons (enteric nervous system, & brain) → <u>Neuronal CCK</u>

Cholecystokinin (CCK)

- CCK activates CCK receptors & modulates physiological functions — Pancreatic exocrine secretion, gallbladder contraction & delayed-gastric emptying etc.
- **CCK receptors** (G-protein coupled receptors) two types:
 - 1. CCK-1 receptor (CCK1R) pancreas, gallbladder, stomach, small intestine, vagus nerve, intra-pancreatic neurons & hypothalamus
 - 2. CCK-2 receptor (CCK2R) neurons, pancreas, stomach & adrenals


CCR1R mediates "satiety signal" via vagal afferent
nerves to central nervous system → a novel target
for obesity treatment

CCK & Rodent Exocrine Pancreas

- CCK-induced pancreatitis in rodents via CCK1R hyperstimulation → well known since 1970's
 - Rapid & highly reproducible, histologically quite similar to early phase of acute pancreatitis in humans
 - Widely used animal model for experimental pancreatitis
- 771 \rightarrow CCK1R agonist
 - Pancreatitis Rodent safety studies
 - Rodent-specific hurdles dose limitation, morbidity & mortality, particularly in long-term & carcinogenicity studies

Pancreatitis – Humans?

The Epidemiology of Pancreatitis & Pancreatic Cancer. Gastroenterology 144: 1252–1261, 2013

Clinicians & Agencies: Sensitive to pancreatic effects in preclinical species

771 → **CCK1R agonist** ~ Pancreatitis in rodents

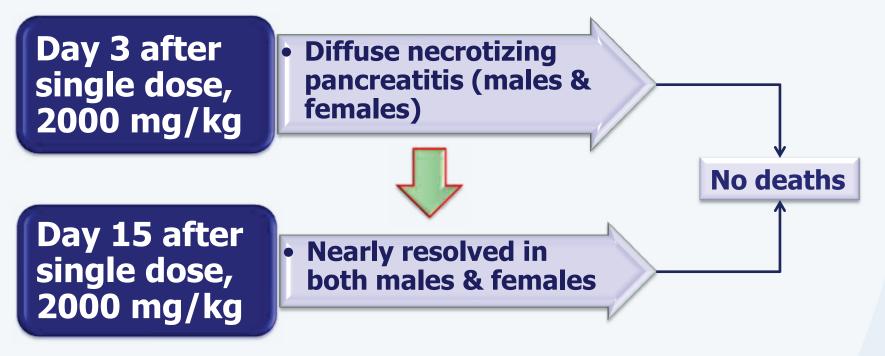
771 (CCK1R agonist) Program?

771 (CCK1R agonist) Program?

Scientific rationales:

- CCK1R-mediated "satiety signal" a novel mechanism to treat obesity
- 2) Several efficacy studies in humans (published 1981, 1988, 1994 & 2001) with CCK-8 & CCK-33 (iv infusion) → increase perception of fullness, decrease hunger & reduced energy intake
- 3) Inter-species related differences in CCK1R expression & CCK-induced pancreatic responses (relevant publications & in-house data)

771-Related Pancreatic Responses: Rats, Mice, Monkeys & Humans

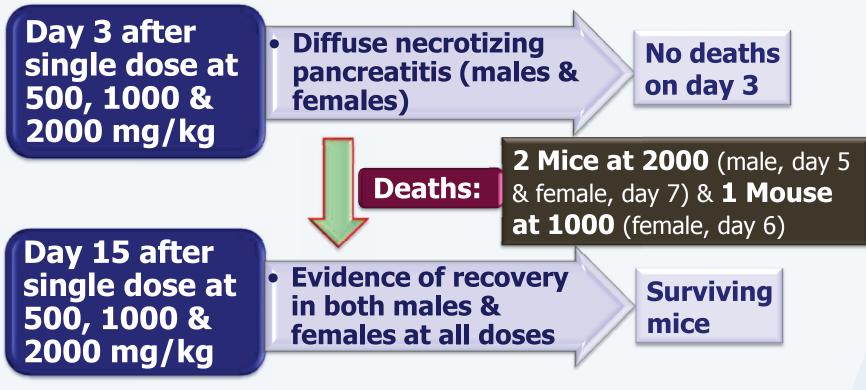

Studies:

- Acute (single) dose study in rats & mice
- Repeat dose studies
 - Rats: 7-Day, 4-Week & 26-Week
 - Monkeys: 4-Week, 26-Week & 52-Week
 - Humans: 24-Week Clinical trial in overweight & obese patients

771: Acute Study in Rats

• 12 Male & 12 Female animals: 6 Rats/Sex/Group

 <u>Single oral dose</u> at 2000 mg/kg 771 & vehicle¹ & sacrificed on Day 3 & Day 15



¹Polyethylene glycol (PEG) 400

771: Acute Study in Mice

• 24 Male & 24 Female mice: 6 Mice/Sex/Group

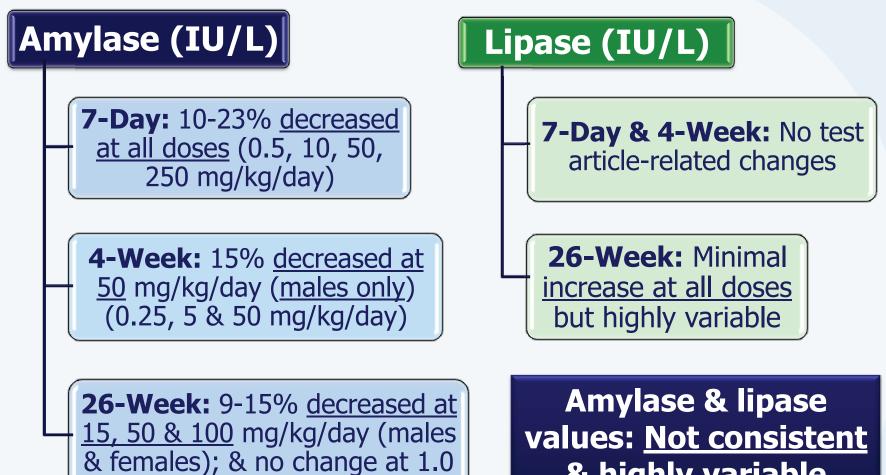
– <u>Single oral dose</u> at 500, 1000 & 2000 mg/kg 771 & vehicle¹) & sacrificed on <u>Day 3</u> & <u>Day 15</u>

¹Polyethylene glycol (PEG) 400

Differences in Pancreatic Responses – Mice & Rats

- At 2000 mg/kg 771 Severity/necrosis in mice > rats
- At 2000 mg/kg 771 Recovery in rats > mice
 - Systemic exposure in mice (~ 2x) > rats
 AUC: 8865 hr.ng/ml (mice) versus 4415 hr.ng/ml (rats)
 - CCK1R structure/binding differences between mice & rats*
 - ♦ For example, CCK analog JMV-180 → partial agonist (rats) & full agonist (mice)

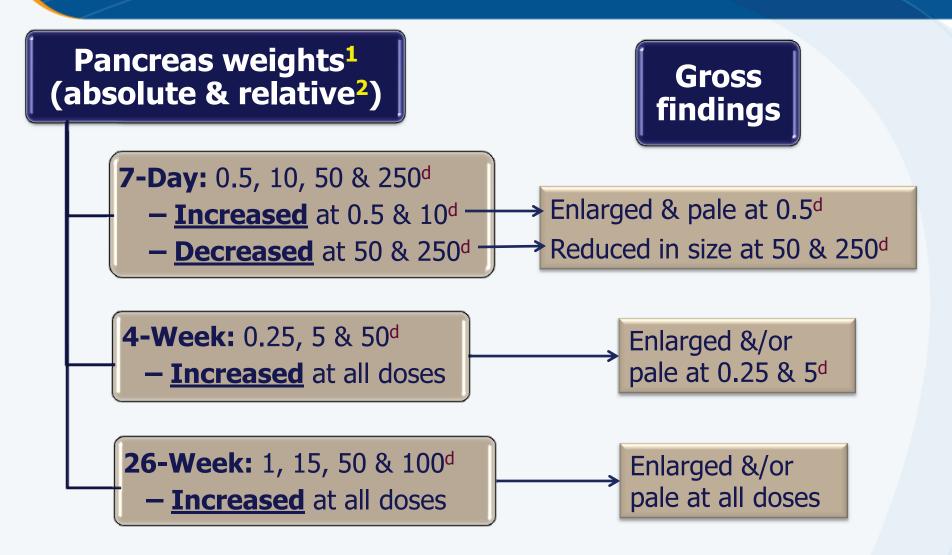
*Ji et al., 2000. Species Differences between Rat and Mouse CCKa receptors Determine the Divergent Acinar Cell response to the Cholecystokinin Analog JMV-180. J Biol Chem 25:19115-19120. *Matozaki et al., 1989. A new CCK analog differentiates two functionally distinct CCK receptors in rat and mouse pancreatic acini. Am J Physiol 257:594-600.


3. Human clinical trial

771: Repeat-dose Studies in Wistar Han Rats

Study	7-Day	4-Week	26-Week
Study type	Non-GLP	GLP	GLP
Number of Rats/Dose	6 Males	$10+8^1$ Males & $10+8^1$ Females	$16+8^2$ Males & $16+8^2$ Females
Doses ³ (mg/kg/day)	0 (Vehicle ⁴), 0.5, 10, 50 & 250	0 (Vehicle ⁴), 0.25, 0.5 & 50 ¹	0 (Vehicle ⁵), 1, 15, 50 & 100 ²
Endpoints ⁵	Routine non-GLP Partial tissue list	Routine GLP Full tissue list	Routine GLP Full tissue list

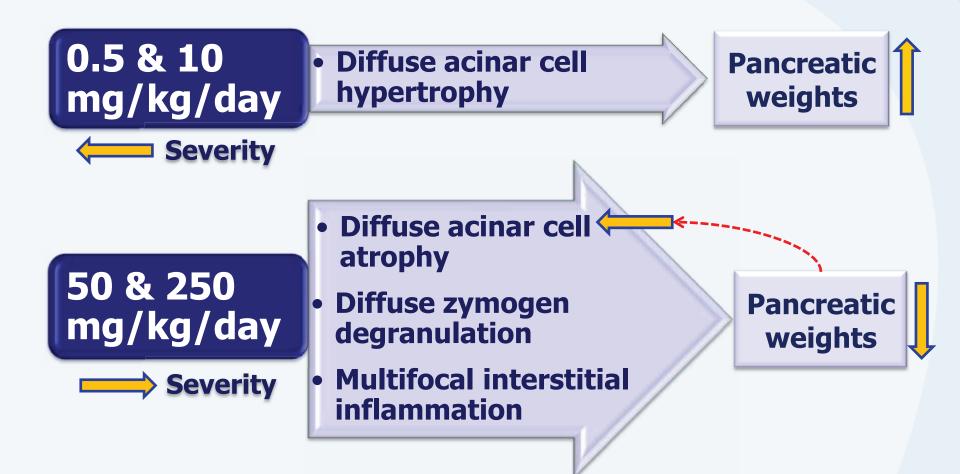
¹2-Week recovery (50 mg/kg/day); ²4-Week recovery (100 mg/kg/day); ³Oral dose; ⁴Vehicle = Polyethylene glycol (PEG) 400; ⁵Vehicle = 0.5% hydroxypropylmethylcellulose & 0.1% Tween 80 **5**Pancreatic effects


Results: Clinical Pathology (Amylase & Lipase)

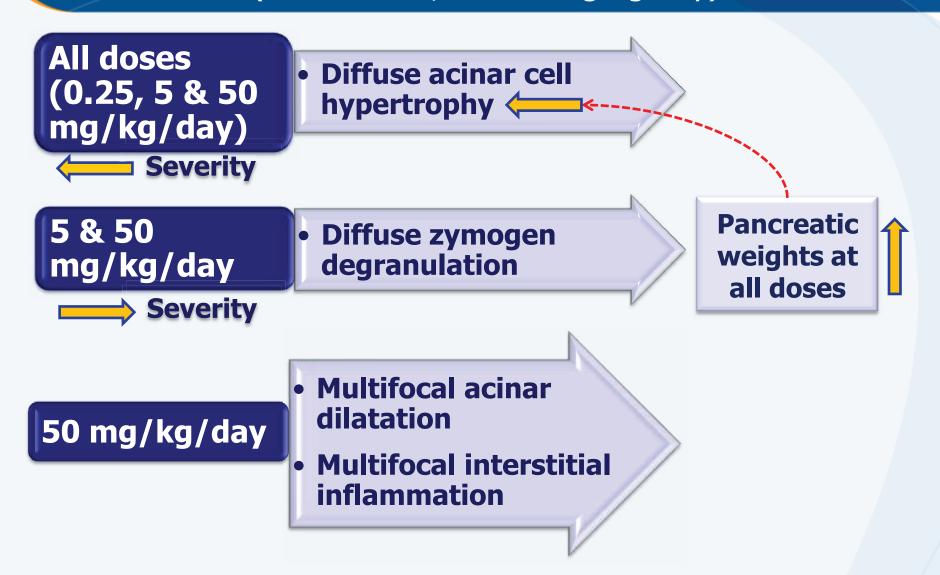
mg/kg/day)

<u>& highly variable</u>

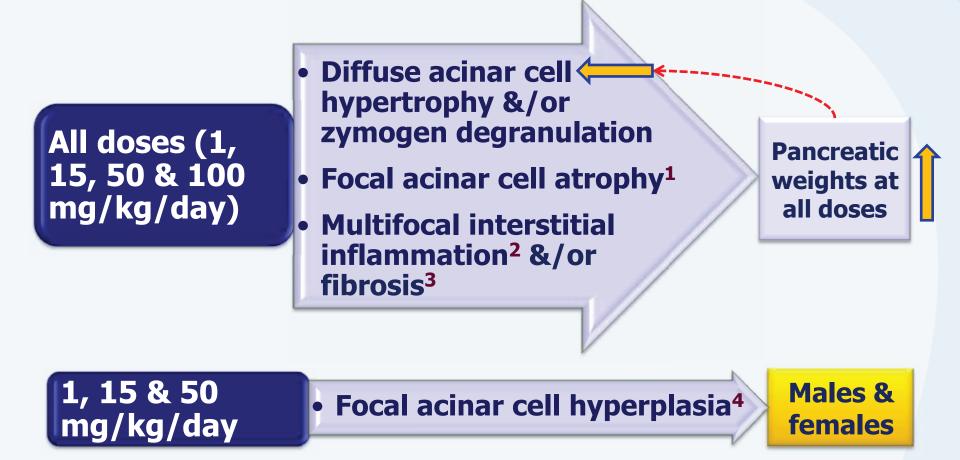
Results: Pancreatic Weights/Gross Findings

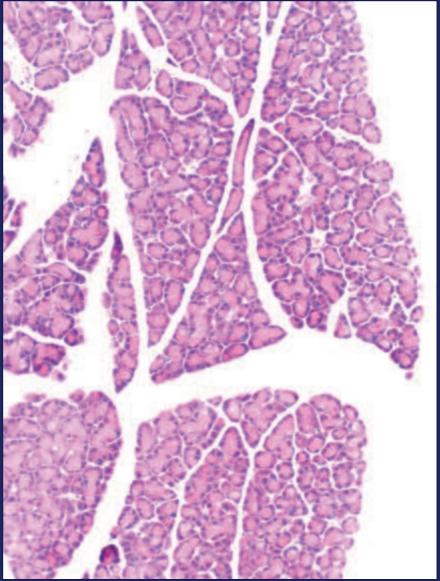


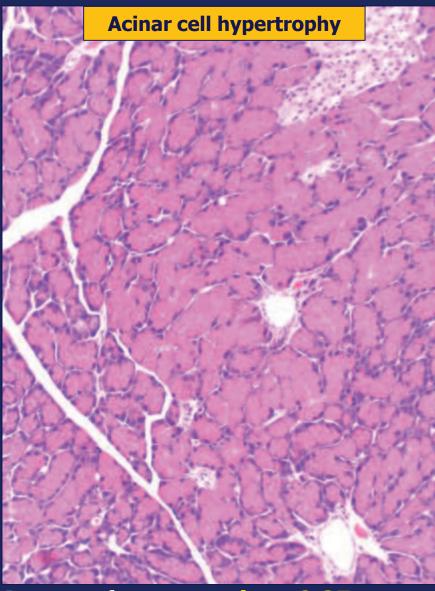
¹P \leq 0.05 or 0.01; ²Relative to terminal body weight & ^dmg/kg/day

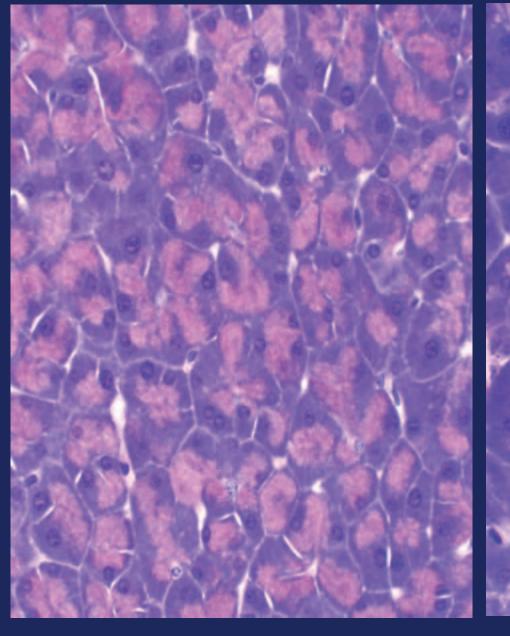

Results: Pancreatic Pathology in Rats

- Major histopathological findings (7-Day, 4-Week & 26-Week):
 - Acinar cell hypertrophy enlarged cells with increased zymogen granules &/or decreased zymogen granules plus cytoplasmic basophilia
 - Zymogen degranulation decreased cytoplasmic zymogen granules with or without cytoplasmic vacuolation
 - Acinar cell atrophy decreased cell size with relatively less zymogen granules & cytoplasmic basophilia
 - Interstitial inflammation (primarily, mononuclear cells) &/or interstitial fibrosis
 - Focal acinar cell hyperplasia well demarcated area (< 3 mm in diameter), tubular-glandular pattern with occasional mitotic figures & some degree of compression of adjacent parenchyma


7-Day Rat Study: Dose-related Pancreatic Findings (Doses: 0.5, 10, 50 & 250 mg/kg/day)


4-Week Rat Study: Dose-related Pancreatic Findings (Doses: 0.25, 5 & 50 mg/kg/day)


26-Week Rat Study: Pancreatic Findings (Doses: 1, 15, 50 & 100 mg/kg/day)


¹Females all doses; males \geq 15 mg/kg/day; ²Males all doses; females \geq 50 mg/kg/day; ³Females at 100 mg/kg/day; ⁴3/16 Males & 3/15 females at 15 mg/kg/day & 1/11 & 2/15 females at 1 & 50 mg/kg/day, respectively

Pancreas from a **control rat**, H&E 100X

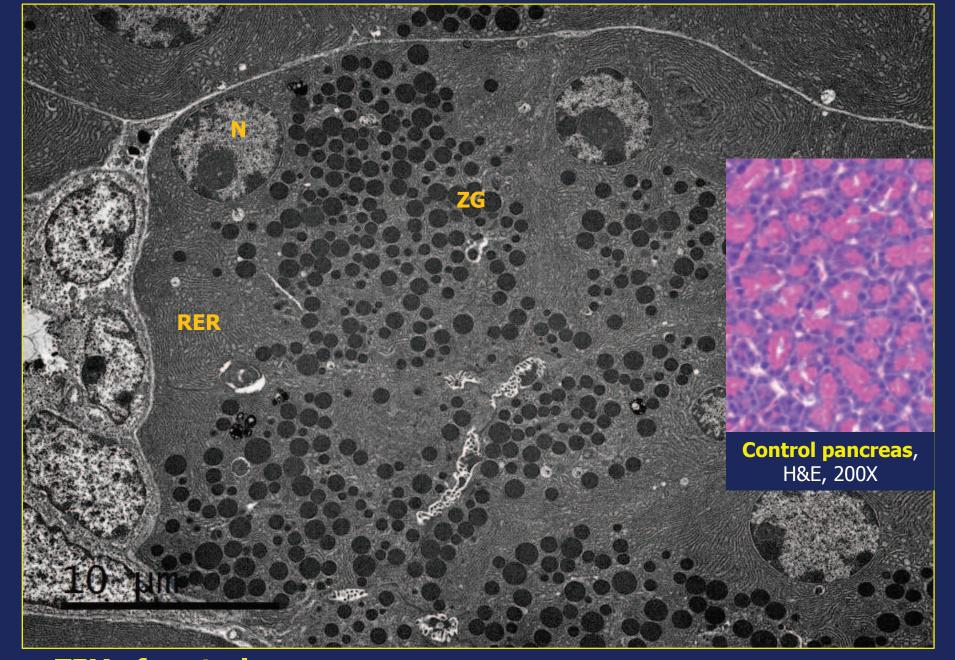
Pancreas from a **rat given 0.25** mg/kg/day 771 for 4 weeks. Note diffuse <u>acinar cell hypertrophy</u>, H&E 100X

Control pancreas. H&E 400X

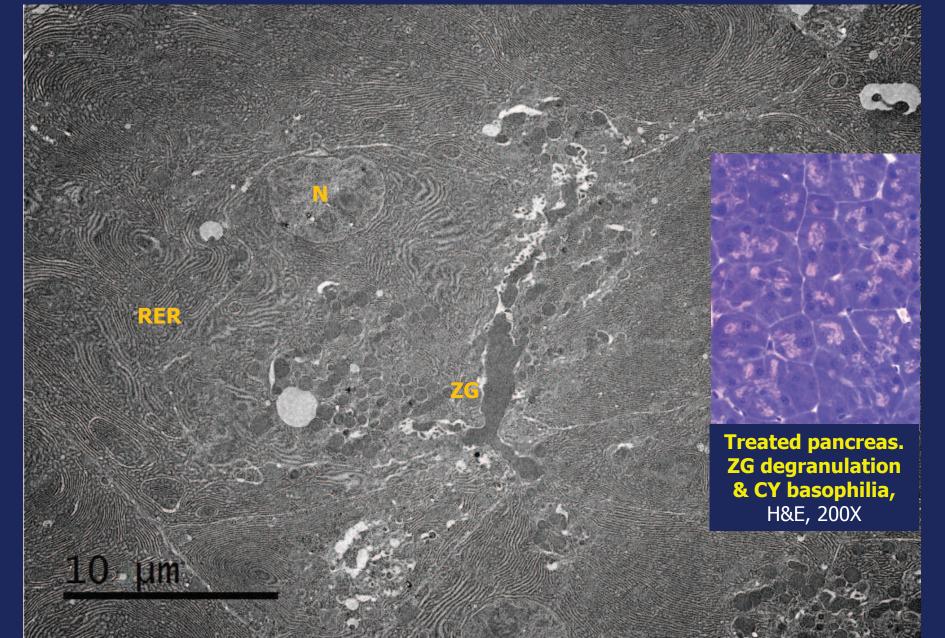
Zymogen degranulation & cytoplasmic basophilia

Note zymogen degranulation & cytoplasmic basophilia. H&E 400X

Acinar cell hyperplasia


Pancreas from a male rat given 15 mg/kg/day 771 for 26 weeks. H&E 200X

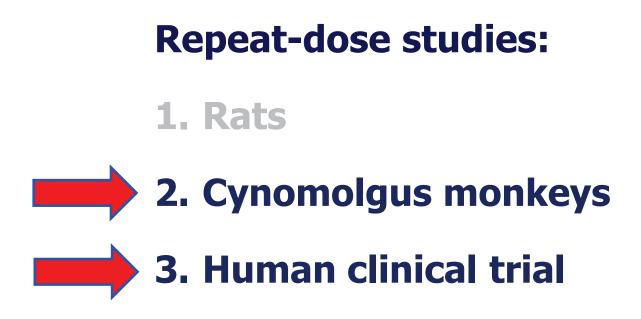
Focal Acinar cell hyperplasia


Focal acinar cell hyperplasia (not adenoma):

- Well demarcated area, < 3 mm in diameter
- Tubular-glandular pattern with occasional mitotic figures & some degree of compression of adjacent parenchyma
- STP diagnostic criteria

High power (H&E 200X). Note tubuloglandular pattern & mitotic figures (arrows).

TEM of control pancreas – Note acinar cells with zymogen granules (ZG) & rough endoplasmic reticulum (RER)



TEM of zymogen (ZG) degranulation & cytoplasmic (CY) basophilia. Note acinar cells with abundant RER & few zymogen granules

Summary of 771-related Findings in Wistar Han rats

Study	7-Day	4-Week	26-Week	
Doses (mg/kg/day)	0 (vehicle), 0.5, 10, 50 & 250	0 (vehicle), 0.25, 5 & 50	0 (vehicle), 1, 15, 50 & 100	
Amylase & Lipase	Amylase (decreased) & Lipase (increased) changes → Not consistent among studies & highly variable			
Pancreatic	<u>Increased</u> (0.5, 10)	<u>Increased</u> – all doses	<u>Increased</u> – all doses	
weights	<u>Decreased</u> (50, 250)	(0.25, 5 & 50)	(1, 15, 50 & 100)	
Pancreatic	0.5 & 10: DACH	0.25, 5 & 50: DACH	1, 15, 50 & 100: DACH,	
changes –	50 & 250: DACA,	5 & 50: Z-D	Z-D, FACA, I-INF & IF	
microscopic	Z-D & I-INF	50: A-D & I-INF	1, 15 & 50: ACHP	
¹ Recovery –	No Recovery group	2-Week: reversible	4-Week: reversible	
microscopic		(except I-INF)	(except IF)	

DACH = Diffuse acinar cell hypertrophy; **DACA** = Diffuse Acinar cell atrophy; **DACA** = Diffuse acinar cell atrophy; **FACA** = Focal acinar cell atrophy; **A-D** = Acinar dilatation; **Z-D** = Zymogen degranulation; **I-INF** = Interstitial inflammation; **IF** = Interstitial fibrosis; **ACHP** = Acinar cell hyperplasia

Repeat Dose Studies in Cynomolgus Monkeys

Study	4-Week	26-Week	52-Week
Number of animals/Dose	3 Males+2 ¹ & 3+2 ¹ Females	4+2 ¹ Males & 4+2 ¹ Females	4+2 ¹ Males & 4+2 ¹ Females
Doses (mg/kg/day)	0 (Vehicle ²), 1, 50 & 250/125	0 (Vehicle ³), 10, 75 & 150 ⁴	0 (Vehicle ³), 50, 125 & 300/500 ⁵
Amylase & lipase	No change	No change	No change
Pancreatic weights	No change	No change	No change
Microscopic findings (pancreas)	None	None	None

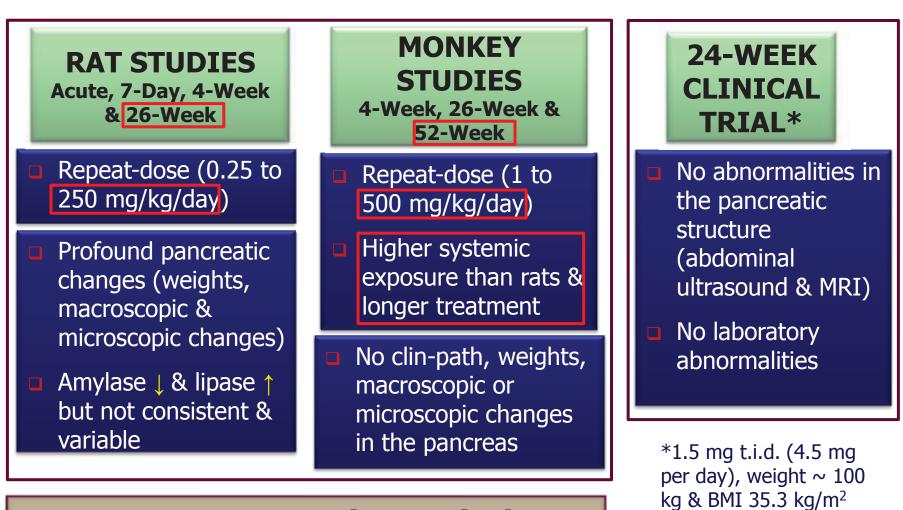
¹Recovery; ²Vehicle = Polyethylene glycol (PEG) 400; ³Vehicle = 0.5% hydroxypropylmethylcellulose & 0.1% Tween 80; ⁴Doses represent 25x, 188x & 375x <u>anticipated maximum</u> <u>clinical dose</u> of 24 mg/day (0.4 mg/kg/day, based on a 60 kg individual); Based on body surface area (mg/m²) 8x, 61x & 122x anticipated maximum clinical dose, 14.8 mg/m²; ⁵Doses represent 167x, 417x & 1000x <u>anticipated maximum clinical dose</u> of 15 mg/day (0.3 mg/kg/day, based on a 50 kg individual); Based on body surface area (mg/m²) 58x, 147x & 353x anticipated maximum clinical dose, 10.2 mg/m²

771: Clinical Trial in Overweight & Obese Patients*

- 24-Week randomized double-blinded study
 - 701 (467 Women & 234 men), overweight (BMI >27 kg/m² & <30 kg/m²) or obese (BMI >30 kg/m²) patients
 - **Doses:** 0.25, 0.5, 1.0 & 1.5 mg (soft gelatin capsules), t.i.d.
- Primary efficacy endpoint: Absolute body weight change from baseline at week 24
 - Monitor pancreatic & gallbladder effects: abdominal ultrasound & MRI before & after treatment
 - Clinical pathology extended parameters to monitor hepatobiliary & pancreatic abnormalities

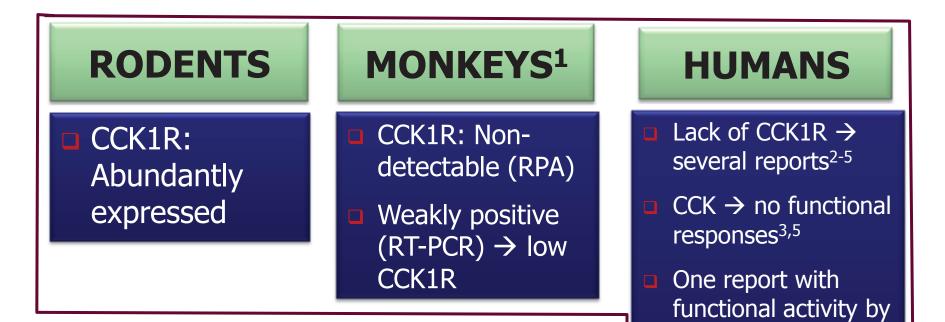
771: Clinical Trial Results

Results:


- No 771 treatment-associated abnormalities in pancreatic or hepatobiliary structure (ultrasound & MRI)
- No laboratory abnormalities of pancreatic/hepatobiliary disease

771 → Did not reduce body weight & development stopped*

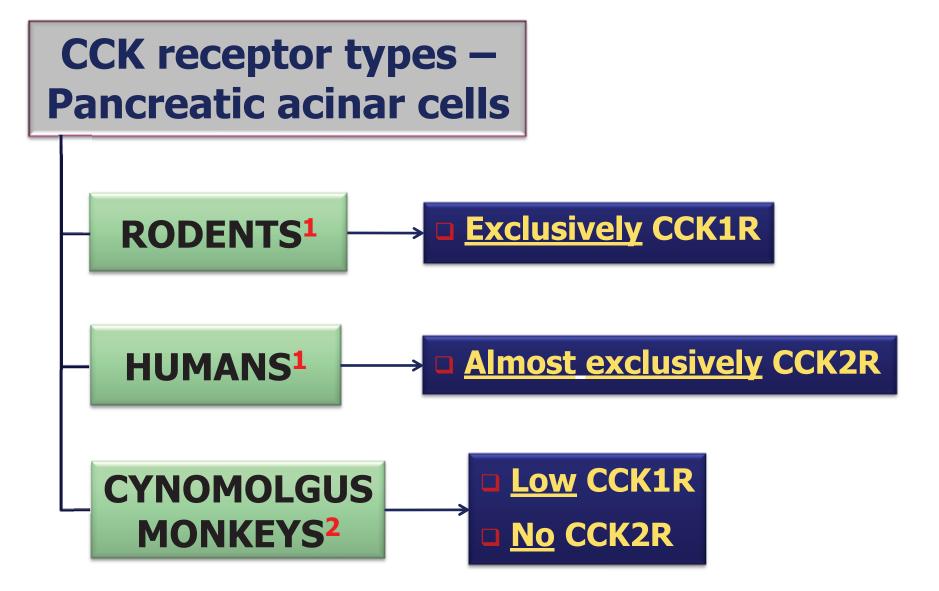
771 Data: Rodents – Monkeys – Humans


*Jordan et al. Clin Pharmacol Therap 83:281287, 2008.

771 (CCK1R agonist) in rats, monkeys & humans

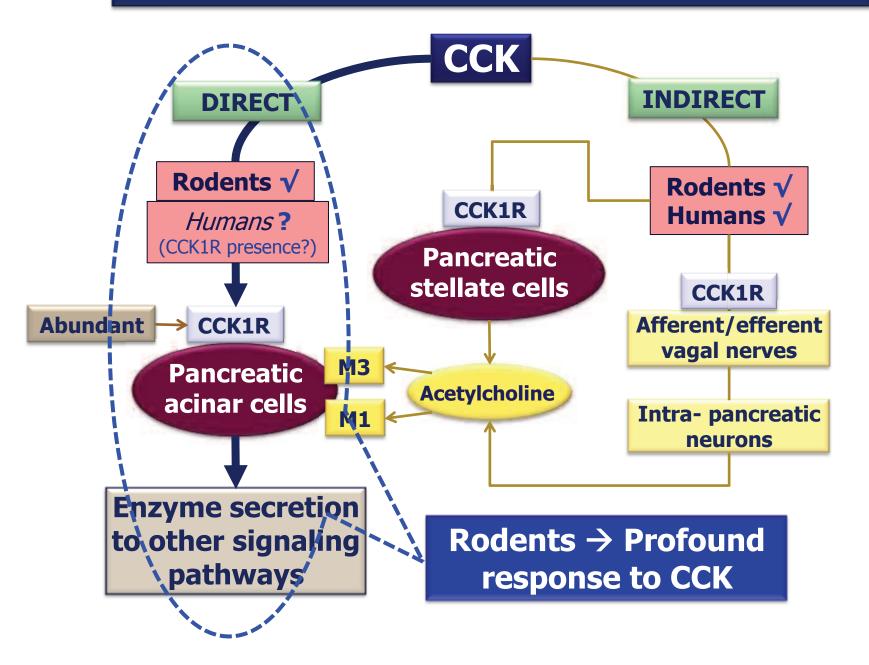
771 \rightarrow **Inter-species variation**

CCK1R expression profiles – Pancreatic Acinar cells



CCK on isolated

human acinar cells⁶


Inter-species variation \rightarrow CCK1R

¹Holicky et al., 2001; RPA = Ribonuclease protection assay; RT-PCR = Reverse transcriptase polymerase chain reaction ³Ji et al., 2001, ⁵Miyasaka et al., 2002, Wonk et al., 1994; ⁴Morisset et al., 2004; ⁶Murphy et al. 2008

¹Berna MJ and Jensen RT. Curr Top Med Chem 1211-1231, 2007 ²Holicky et al. Am J Physiol Gastrintes Liver Physiol, G507-G514, 2001

CCK-mediated pancreatic acinar cell responses

Conclusion & Translation of Rodent Pancreatic Findings to Cynomolgus Monkeys & Humans

 Pancreatic responses to 771 (CCK1R agonist): Different among rodents (sensitive & responsive), monkeys (non-responsive) & humans (no response – 24-Week clinical trial)

Relevant inter-species variations:

- CCK1R expression (abundant in rodents; low in monkeys; & undetectable/absent in humans, except one report showing functional response in isolated human acinar cells)
- CCK receptor types → Rodents (CCK1R); humans (CCK2R) & cynomolgus monkeys (low CCK1R & no CCK2R)
- CCK1R-mediated acinar cell response (direct & indirect pathways in rodents versus mostly indirect in humans)

CCK1R agonist-induced pancreatic findings in rodents – unlikely to occur in monkeys & humans

Acknowledgements

GSK:

- Robert Greenhill
- Mary Keener
- Richard Peterson
- Richard Miller
- Roger Brown
- Rick Adler

Pathologists – Former GSK & External (CRO) Project team – Clinicians, statisticians & others

