

ORGANIZED BY SOCIETY FOR TOXICOLOGIC PATHOLOGY IN INDIA (STPI)

OCTOBER 29-31, 2010

The Atria Hotel, #1, Palace Road, Bangalore - 560 001

Toxicologic Pathology of the Male Reproductive System - 2

3rd STPI Seminar, Bengalore, October 29-31, 2010

Robert A. Ettlin Dr. med., FIATP – FATS – ERT Ettlin Consulting Ltd. CH-4142 Muenchenstein, Switzerland

Handout version of presentation

- Photographs, in particular histological slides, do not reproduce well in B&W at small size and are therefore generally not shown in the handout
- On the other hand, some slides in the handout might not be presented during the lecture because of time constraints
- To our best knowledge material reproduced in the handout is either not or no longer covered by copyright or the author has permission to use it
- The handout is only for personal scientific use and may not further distributed or serve for commercial purposes

Overview

Lecture 2: Practice / Application

- C Recommended approaches for evaluation of MR organs (general methods) 25 min.
 - Including study design and sampling techniques
 - Excluding staging and sperm evaluation
- D Morphologic evaluation of the testis of laboratory animal species - 10 min. *Excluding*
 - Background and age related changes
 - (Non-)neoplastic changes in male reproductive system
- E Endocrine disruption: Guidelines for histopathologic evaluation 10 min.
 - Excluding effects of phytoestrogens of reproductive physiology and pathology

Overview

Evaluation of MR organs

Guidelines

- Study design
- □ "Non-anatomic" parameters, esp. hormones
- Organ weights
- □ Tissue preparation
- Histopathological evaluation
- Dealing with unexpected findings
- Conclusions

Guidelines (selection)

- General safety guidelines
- Guidelines for assessing male and female reproductive toxicity including offspring
 - ICH S5(R2): Parent guideline: Detection of toxicity to reproduction for medicinal products Addendum to the parent guideline: Toxicity to male fertility
 - EPA: Guidelines for reproductive toxicity risk assessment
 - FDA: Food additives, etc.
 - OECD:
 - Testing of chemicals (415, 416, 421, 422)
 - Endocrine disrupters
 - Etc.

Standard "reprotox" studies not addressed in this presentation

In vivo models for male reproductive toxicology R. W. Tyl <u>http://www.currentprotocols.com/protocol/tx1601</u>

Evaluation of MR organs

- Guidelines
- Study design
- □ "Non-anatomic" parameters, esp. hormones
- Organ weights
- □ Tissue preparation
- Histopathological evaluation
- Dealing with unexpected findings
- Conclusions

Male-specific endpoints of reproductive toxicity

Organ weights	Testes, epididymides, seminal vesicles, prostate, pituitary			
Macroscopic examination and histopathology	Testes, epididymides, seminal vesicles, prostate, pituitary			
Sperm evaluation*	Sperm number (count) and quality (morphology, motility)			
Sexual behavior*	Mounts, intromissions, ejaculations			
Hormone levels* (selection)	Luteinizing hormone (LH), follicle stimulating Hormone (FSH), testosterone (T), estrogen (E), prolactin (PRL)			
Developmental effects	Number/status of offspring, in particular: testis descent*, preputial separation, sperm production*, ano-genital distance, external genitalia*, general malformations			
* Can be obtained or estimated relatively easily in humans				

Sensitivity to detect effects on MR parameters

Parameters	Detection Rate (%)		
Epididymal sperm count	90		
Histopathology	89		
Testicular sperm count	81		
Sperm motility	76		
Accessory gland weights	76		
Sperm morphology	73		
Epididymal weight	73		
Testis weight	71		
Detection of Effects on Male Reproduction - A Literature Survey			

Beate Ulbrich and Anthony K. Palmer. Int J Toxicol 1995 vol. 14 no. 4 293-327

Sensitivity in combination

Parameters	Detection Rate (%)		
Histopathology alone	89		
+ organ weights	94		
Sperm motility alone (Percent motility + motility parameters)	76		
+ histopathology + organ weights	100		
Sperm analysis alone (Sperm counts + sp. motility + sp. morphology)	97		
+ histopathology	100		
Detection of Effects on Male Reproduction - A Literature Survey Beate Ulbrich and Anthony K. Palmer. Int J Toxicol 1995 vol. 14 no. 4 293-327			

Study types and MR parameters

- General (4 or) 13 week toxicity studies often most appropriate, because various endpoints of relevance to MR can be assessed:
 - Organ weights
 - Morphology (macro/microscopic)
 - Clinical chemistry parameters and, if appropriate, hormone levels
- Dedicated studies are need to assess function (not a sensitive parameter) and genotoxicity
- Tailor-made studies designed on a case-bycase basis may be needed for trouble-shooting in case on unexpected preclinical MR findings

Protocol for detailed investigation of MR toxicity					
Center	In Vivo Mo of Life Science	odels for Male Re ces and Toxicolog	Toxicology - Wiley eproductive Toxicolo gy Research Triang tprotocols.com/prot	ogy - Rochelle le Institute, N	e W. Tyl
		Live animals			Necropsy
Electro- ejaculation	Blood sampling	Unilateral orchidectomy			
Guodiation		Culture	Homogenization resistant spt/sp	Histo- pathology	
Cauda sperm - Number - Motility - Morphology	FSH, LH, DHT If normal: Repeat after GnRH stimulation	T, DHT Inhibin <i>In culture and</i> <i>in testis</i> Morphology Other	Daily sperm production	Staging	Organ weights Testis: - Histopathology incl. staging - Daily sperm production - Culture Epididymis: Histopathology
Routine parame	eters are mark	parameters ked in brown			 Histopathology Cauda sperm CNS incl. pituitary Adrenals Liver 11

Species selection

- Generally no one species better
- Expect differences in susceptibility to toxins
 Reasons for these differences mostly unknown

See also Parker and Tyl, 2003, EPA White Paper

http://www.anthonyturton.com/admin/my_documents/my_files/3A3_EPA-HQ-OPPT-2003-0027-0009.pdf

Time

- Importance of <u>early</u> time points: cell-specific toxicity
- 4 week toxicity studies often sufficient, but <u>13</u> week studies are more reliable
- For tailor-made studies: duration of spermatogenic process (mouse ~ 5 weeks, rat ~ 8.5 weeks) is guiding duration, especially for recovery period
- Time-course study with serial autopsies (hours to weeks apart) may be necessary

Animals are immature at test start

Species	Recommended starting age	Age of sexual maturity	
Rat	Soon after weaning = 6-7 weeks (after acclimation)	8 – 10 weeks	
Mouse	Soon after weaning = 6-7 wks (after acclimation)	7–8 weeks	
Dog	4-6 months, max. 9 months	7 – 12 months	
Primate	Young adults (often <3 years)	3.5 – 4.5 years	

Use mature animals for specific MR studies

- Immature testes: spermatogenesis absent or incomplete
- Pubertal MR system
 - Testes: often degenerating and sloughing germ cells, giant cells, spermatogenesis focally incomplete
 - Epididymis: sloughed germ cells, giant cells, reduced sperm content
 - Same picture in case of toxicity!

Overview

Evaluation of MR organs

- □ Guidelines
- Study design
- "Non-anatomic" parameters, esp. hormones
- Organ weights
- □ Tissue preparation
- Histopathological evaluation
- Dealing with unexpected findings
- Conclusions

Hormone measurements

- LH, FSH, Prl, testosterone: technically relatively easy
- Interpretation complicated by <u>irregular, diurnal</u> <u>variation</u> and pulsatile release of GnRH, LH and T with a 1-2(+) hour intervals and no clear daily pattern
- Age dependent
- Hormone levels do not provide information on receptor status
- Difficult to distinguish
 - Primary (relevant for pathogenesis) and
 - Secondary (reactive to injury) changes

Sperm evaluation

- Epididymal sperm parameters See separate presentation
 - From electroejaculation in living animals or from the cauda epididymidis at necropsy
 - Number: Production, variability
 - Quality: Morphology
 - Function: Motility
- Testicular "sperm" count: homogenization resistant spermatid count (mainly step 17-19)
- □ Flow cytometry for evaluation of <u>whole</u> <u>spermatogenic process</u>

Evaluation of MR organs

- Guidelines
- Study design
- □ "Non-anatomic" parameters, esp. hormones
- Organ weights
- □ Tissue preparation
- Histopathological evaluation
- Dealing with unexpected findings
- Conclusions

Organ weights

Testes

<u>Epididymides</u> in toto plus possibly cauda (stored sperm) separately

Accessory sex organs: seminal vesicles and prostates

Other endocrine organs, in particular pituitary and thyroid

- Absolute (especially testis) / relative weight values
- Organ weights are <u>sensitive indicators</u> of hormonal balance In particular, accessory sex organ weights reflect well circulating testosterone levels, if receptor function is normal

Hershberger assay

- □ To evaluate potential (anti-)androgenic effects
- Test system: immature and castrated male rats
- Continuous 10-day exposure
- Assessment in particular of the weight of androgendependent tissues
 - Ventral prostate
 - Seminal vesicles (with fluid) plus coagulating glands
 - Levator ani plus bulbocavernosus muscles
 - Bulbourethral glands
 - Glans penis
- Optional: Serum testosterone + luteinizing hormone
- http://www.currentprotocols.com/protocol/tx1609

Evaluation of MR organs

- □ Guidelines
- □ Study design
- □ "Non-anatomic" parameters, esp. hormones
- Organ weights
- □ Tissue preparation
 - Sampling

Fixation

- Histopathological evaluation
- Dealing with unexpected findings
- Conclusions

MR System: Sampling & Trimming

Revised guides for organ sampling and trimming in rats and mice

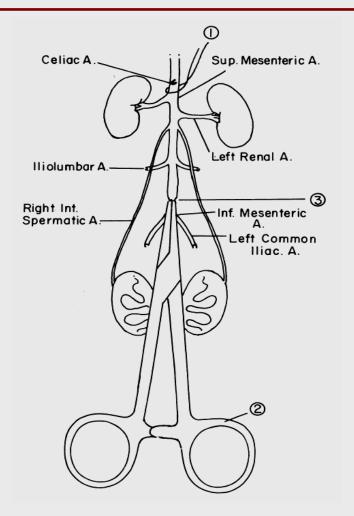
http://reni.item.fraunhofer.de/reni/trimming/

Ruehl-Fehlert C et al (2003) Revised guides for organ sampling and trimming in rats and mice -Part 1. Exp. Toxicol Pathol. 55: 91–106

Exp Toxicol Pathol 55: 91–106

- Kittel B, Ruehl-Fehlert C et al (2004) ... Part 2.
 Exp Toxicol Pathol 55: 413–431
- Morawietz G et al (2004) ... Part 3. Exp Toxicol Pathol 55: 433–449

Details to be shown during presentation


Basic histological methods for testis


Fixative		Embed-	Characteristics of sections				Use
Applica- tion	Туре	ding	Thick- ness µ	Size	Quality	Stain	
Immersion	Formalin	Paraffin	4-6	Cross- section	(+)	Regular	Discou- raged
	Bouin's*				+		Routine
		GMA	2		++	<u>+</u>	Special
	Bouin's**				+++	regular	Special Research
	Glutar- aldehyde	Epon Araldite	<< 1	15 tubules	++++	Toluidine blue***	Research
Legend	 * or Davidson', Zenker's *** or methylene blue GMA: glycol methacrylate ** or mixture of formalin and glutaraldehyde (Karnovski's) 						

Histological photomicrographs illustrating the results of various fixation and embedding schemes to be shown

Tissue preparation

Part-body perfusion

e

Evaluation of MR organs

- Guidelines
- Study design
- "Non-anatomic" parameters, esp. hormones
- Organ weights
- □ Tissue preparation
- Histopathological evaluation
 - Qualitative (semi)quantitative Staging
 - Primary target
- Dealing with unexpected findings
- Conclusions

Histopathological endpoints – 1

- Organ weight as *quantitative* measure often sufficient
- Semi-quantitative parameters
 - <u>Tubular diameter</u> and size of tubular lumen
- Qualitative and general
 - Architecture of epithelium and interstitium
 - Location of adverse effect: focal, diffuse; partial, generalized; unilateral, bilateral

Histopathological endpoints – 2

Qualitative or semiquantitative

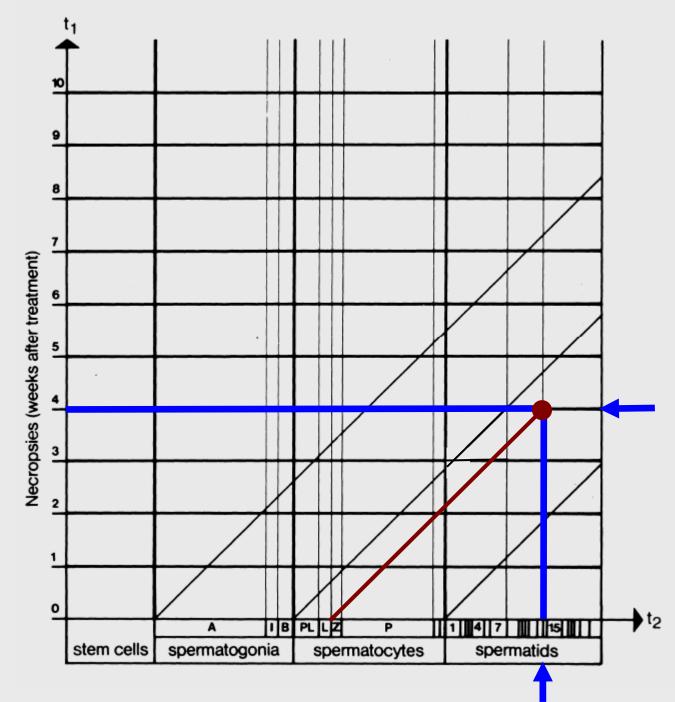
- Degenerating cells
- Vacuolation in the seminiferous epithelium, often within SC
- Sloughing cells, a consequence of the disruption of SC-GC junctions
- Multinucleated giant cells, often a result of unspecific and "mild" toxicity
- □ Cell associations: <u>staging</u> (see next slides)

Qualitative staging – What for and how

- To <u>classify</u> tubules according to spermatogenic cycle, mainly according to
 - Developmental steps of spermiogenesis and
 - Occurrence of meiosis
- Particularly important for studies up to 28 days
- Stain for acrosome: PAS (counterstain with hematoxylin)

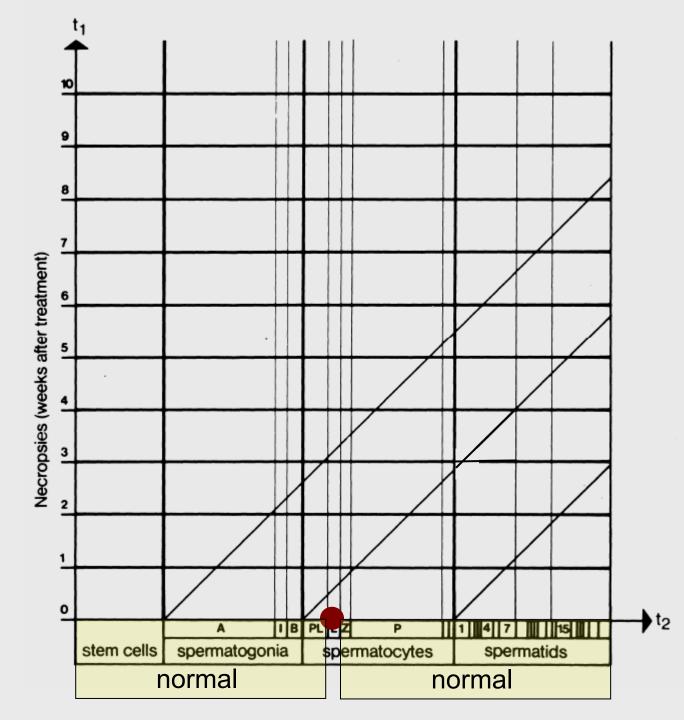
In dogs and non-human primates acrosomes clearly visible only around spermiation

Also H&E allows approximate staging

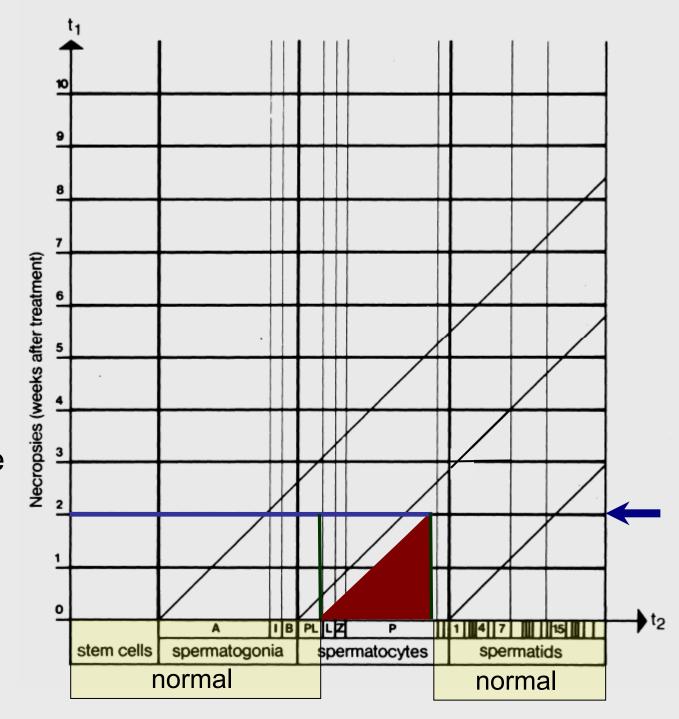

Qualitative staging – Objectives

- □ Missing GC
- □ GC present inappropriately, e.g. retained elongated spermatids in stages XI XI
- GC at wrong location, e.g. elongated spermatids at basis of seminiferous epithelium
 - (→ phagocytosis mainly in stage XII)
- □ GC with abnormal morphology
 - In general, e.g. malformation
 - For the particular stage, e.g. retardation of acrosome development

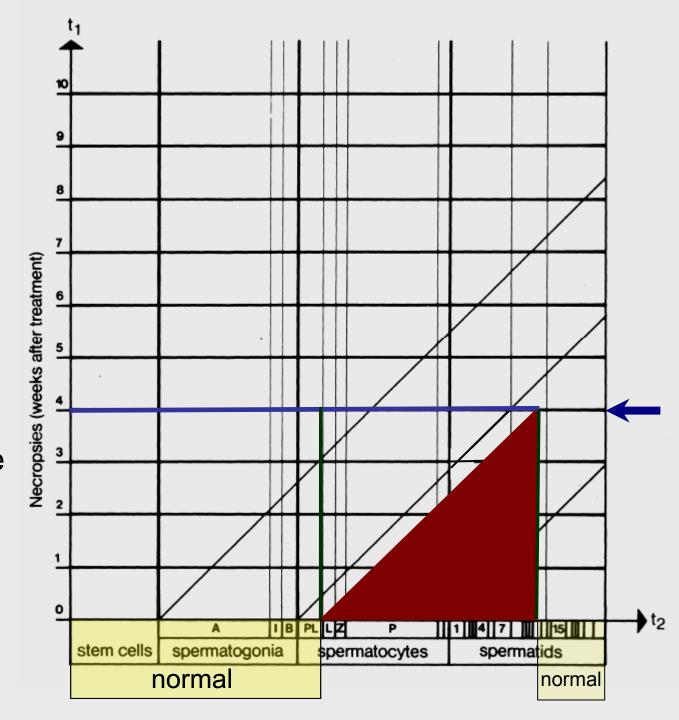
Following single dose or short-term treatment:


Damaged or missing germ cell type e.g. at 4 week necropsy allows to identify the primary damaged cell by extrapolating backwards

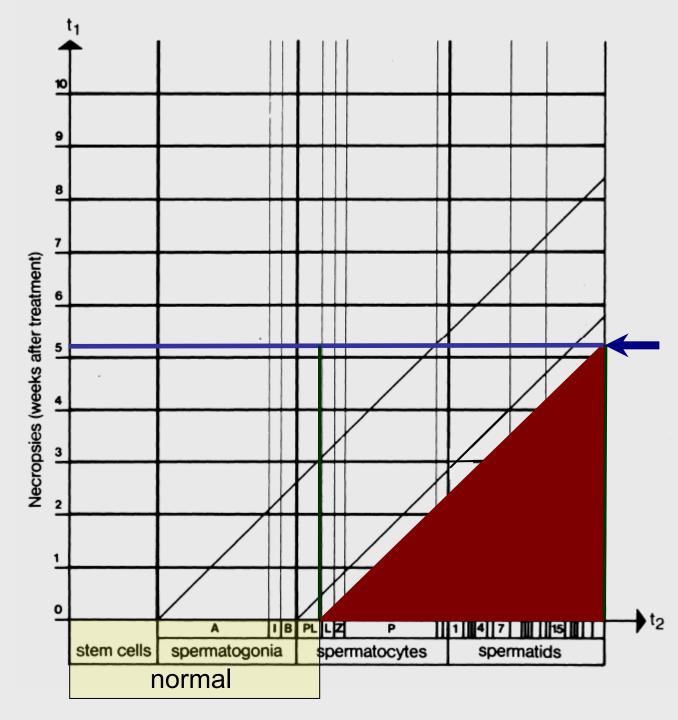
t1 and t2 axis are at same scale


On day 0, treatment with compound X starts.

Assumption: compound X damages selectively leptotene spermatocytes


2 weeks of continuous treatment with compound X result in loss also of zygotene and most pachytene spermatocytes:

Depletion by maturation → gap

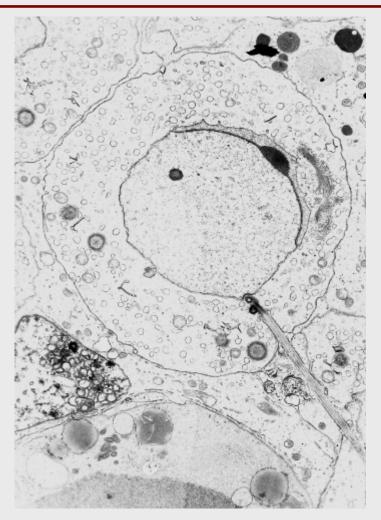

4 weeks of continuous treatment with compound X result in loss also of zygotene and most pachytene spermatocytes:

Depletion by maturation → gap

5 weeks and 2 days of continuous treatment with compound X result in loss of all germ cells older than preleptotene spermatocytes:

Spermatogenic "arrest"

Quantitative histopathological endpoints


- Tubular or luminal diameter measured
- Number of germ cells per cross section (e.g. in stage I or VII/VIII)
 - Total GC
 - Specific GC type
 - Relatively easy: spc and round spermatids
 - Difficult: elongated spt (small diameter) and spg subpopulations (difficult to differentiate)
 - Possibly using PCNA labeling for proliferating spg
 - Relative numbers e.g. per Sertoli cell nuclei Absolute numbers

Methods

Histopathology

Ultrastructural investigations

- Many samples / sections might be needed to find a suitable one because of the complex testicular structure and the many different elements
- Special tool for those
 with experience to trace
 early changes

For an method overview see also: Society of Toxicologic Pathology position paper **Recommended approaches for the evaluation** of testicular and epididymal toxicity Lynda L. Lancing et al Toxicol Pathol 30/4: 507-520, 2002

Evaluation of MR organs

- Guidelines
- Study design
- "Non-anatomic" parameters, esp. hormones
- Organ weights
- □ Tissue preparation
- Histopathological evaluation
- Dealing with unexpected findings
 - Review of hazard identification
 - Characterization of finding
 - Risk evaluation
 - Risk management
- Conclusions

Methods

1. Review of hazard identification

- Is there indeed an adverse effect? Unilateral vs. bilateral, spontaneous alterations, handling artifacts, variations, age-related changes, etc. (Details regarding spontaneous alterations covered in separate presentation)
- □ What else is known about the compound in question?
- Were there other relevant findings? <u>System approach</u> particularly important for MR adverse effects
- Is the study technically valid?
 E.g. influence of sexual immaturity
- □ Is the model valid?
- Were there other modifying factors? (Effects of food restriction and photoperiod covered in separate presentation)

2. Characterization of finding

- Review of older studies esp. for earlier signs
- Additional investigations on available material, e.g. hormone measurements in serum
- Additional tailor-made studies ("troubleshooting")
 - More detailed assessment of exposure-response relationship, NOEAL, ADME, etc.
 - Sequence of pathogenetic events e.g. with serial necropsies to investigate early and "specific" lesions
 - Other species to evaluate species specificity

Methods

3. Risk evaluation

□ "Qualitative" aspect:

Mode of Action: relevance to man; human sensitivity

- □ "Quantitative" aspects:
 - Safety ratio: exposure at NOAEL of the most sensitive species relevant to humans for effect in question
 - Overall weight of evidence, including e.g. also
 - Risk-benefit aspects incl. in particular
 - Severity and reversibility of effect in question
 - Number of species affected
 - Alternatives on the market
 - Exposed population, in particular age
 - Exposure: how often, how much, how long
 - Can man be monitored for adverse effect?

3. Risk evaluation – Reversibility

- Relatively <u>resistant</u> to toxic injury are
 - Resting spg
 - Sertoli cells. However, if permanently damaged: no spermatogenesis despite spg
- Consequences of androgen (and other <u>hormonal</u>) deficiency are generally reversible, if hormonal climate is re-established
- Granulomatous inflammation of epididymis and sperm granuloma are considered irreversible (may progress)
 Persistent inflammation may be associated with genotoxicity

Methods

4. Management

Surveillance of exposed human beings: ultimate proof often only possible in man, if human testing in man is acceptable

Laboratory analyses	MR performance
Sperm analysis	Function
Hormones, etc.	Pregnancy
	Children

Limitations of the use of the compound
 Etc.

Review article on troubleshooting

- Successful drug development despite adverse preclinical findings
- Part 1: Processes to address issues and most important findings
- Part 2: Examples

Journal of Toxicologic Pathology (Japanese Society of Toxicologic Pathology) In print in vol. 23, No. 4 (December, 2010) http://www.jstage.jst.go.jp/browse/tox **Methods**

Conclusions Topic C: Methods – 1

- For a general assessment of the MR system standard <u>subacute toxicity studies</u> are sufficient (plus conventional reprotox studies for function)
 - Holistic approach, combining the evaluation of multiple parameters
 - Keep in mind that animals are often sexually immature at start of study

For trouble shooting studies consider <u>time</u> <u>course investigations</u> (primary target cell) and <u>hormone measurements</u>

A standard 4-week <u>recovery period</u> is generally not sufficient

□ In general terms, there is <u>no best species</u>

Methods

Conclusions Topic C: Methods – 2

- Organ weights are important quantitative parameters
- □ <u>Tissue preparation</u> is particularly important:
 - Standardized sampling
 - Improved fixation (formalin is not sufficient!)
 - Paraffin sections are generally sufficient
- Qualitative staging is a must. PAS-H staining helps
- For <u>assessment of unexpected adverse findings</u> in the MR system following general procedures, but as always take a case-by-case approach

Overview

Lecture 2: Practice / Application

- C Recommended approaches for evaluation of MR organs (general methods) 25 min.
 - Including study design and sampling techniques
 - Excluding staging and sperm evaluation
- D Morphologic evaluation of the testis of laboratory animal species 10 min. *Excluding*
 - Background and age related changes
 - (Non-)neoplastic changes in male reproductive system
- E Endocrine disruption: Guidelines for histopathologic evaluation 10 min.
 - Excluding effects of phytoestrogens of reproductive physiology and pathology

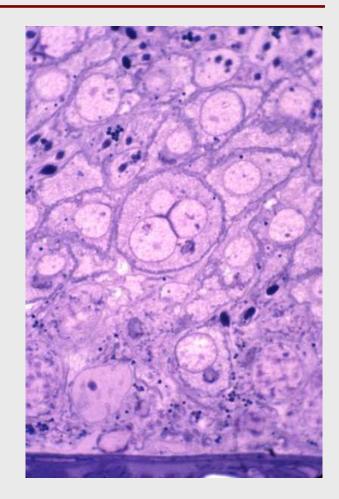
Morphologic evaluation of the testis

- □ When is lesion observed
- What cells are first affected
- Morphological pattern
- → Mode of action (MoA)
- Progression and maximal response
- Reversibility (partial/complete) and by when

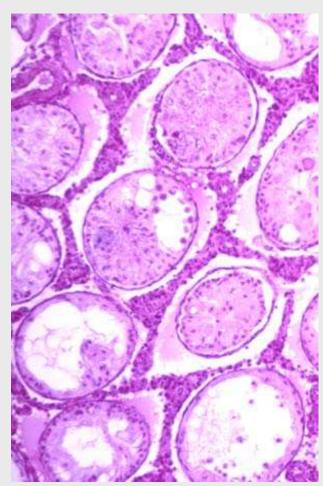
Histological photomicrographs on various induced testicular lesions to be shown

Germ cell (GC) toxicity – Early signs – 1

Within hours


- GC death, generally by apoptosis
 - Rapid
 - No inflammation
 - Rapid phagocytosis by SC
 All GC may disappear within 24-48 hours
- Most vulnerable
 - Spg A stages XI-I
 - Midpachytene spc stage VII
 - Spc in meiosis stage XIV
 - Step 7 and 19 spt in stage VII

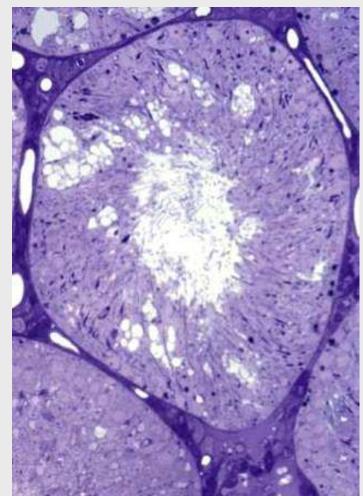
Germ cell (GC) toxicity – Early signs – 2


Spermatids (spt)

- Early spt form <u>multinucleated</u> <u>giant cells</u>*: fusion of syncytial cell groups, often with fused nuclear acrosome
- Late spt are <u>not released</u> but move to basal portion of tubule: spermatid retention in stages VIII to XII, an early sign of testicular toxicity
- Occasionally also arising from spc

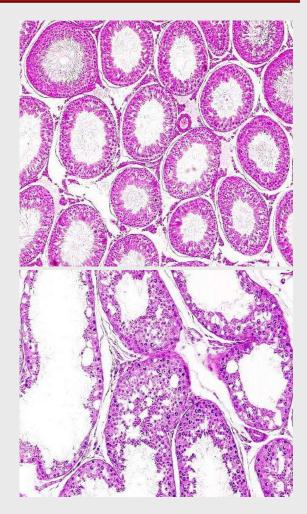
Germ cell (GC) toxicity – mid-long term

- □ After "a couple" of <u>days</u>
 - Depletion of specific GC generations: <u>small gaps</u>
- □ After "a couple" of <u>weeks</u>
 - Maturation depletion of target and more mature GC: <u>larger</u> <u>gaps</u>
 - Spermatogenesis may appear "<u>arrested</u>" at earlier cell types
- □ <u>Long-term</u> effects
 - If also spermatogonia affected: <u>SC-only tubules</u>
 - Otherwise reversible: rat >(>) 56 d, man > 2 years

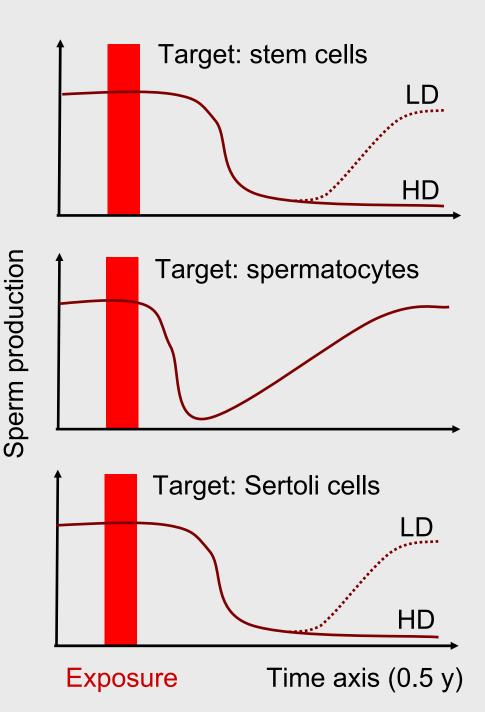


Histological photomicrographs of testicular lesions due to anticancer treatment of men to be shown

Sertoli cells (SC) – a frequent target


Early signs

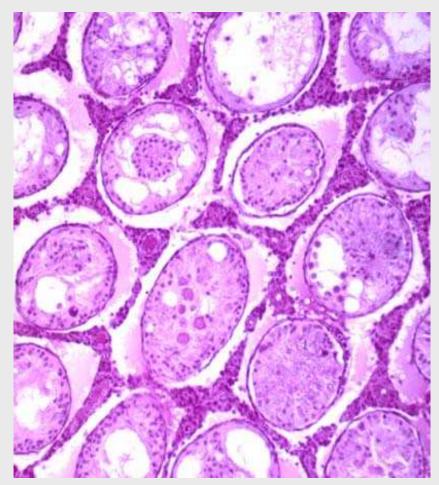
- Vacuoles (often dilated ER) resulting in SC swelling
- GC sloughing (epididymal lumen!)
- Retention of elongated spermatids
- Degenerating GC (secondary effect)
- Foci of missing germ cells
 - Disturbed architecture of germinal epithelium
- Advanced changes
 - Progressive degeneration of GC with increased sloughing
- End stage
 - SC-only tubules: irreversible


Fluid imbalance

- Early signs
 - Testicular weight
 - Diameter of tubular lumen of testis, efferent ductuli and epididymal tubule
 - (Interstitial edema in case of increased fluid production)
- Later signs in case of increased fluid production
 - Pressure atrophy of germinal epithelium

Effect on semen

- Delay Shorter, the more mature the target cells are
- Recovery
 Depends on dose
 Severe damage to
 stem cells and to
 Sertoli cells leads to
 permanent infertility
- HD: high dose LD: low dose


Leydig cells toxicity

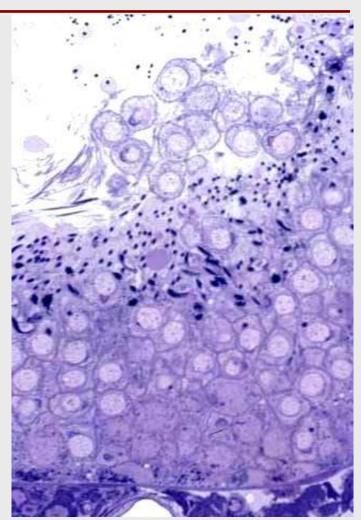
- Well visible are <u>trophic</u> changes: atrophy, hypertrophy/hyperplasia and neoplasia
- Other morphological signs for primary LC toxicity are not readily evident on standard histological sections with exception of
 - Foamy cytoplasm following e.g. with hormonally active compounds
 - Necrosis/apoptosis e.g. with anticancer drugs, ethanedimethane sulfonate
- LC changes are <u>frequently secondary</u> to changes in the seminiferous epithelium (see next slide)

Leydig cells – Secondary changes

In the long-term severe damage to spermatogenesis is generally associated with <u>LC hyperplasia</u>

- "<u>Relative</u>" because of decreased tubular volume
- Absolute, because of endocrine/paracrine changes associated with disturbed/absence spermatogenesis

Tubular or testicular necrosis


- □ A consequence of ischemia
- E.g. following
 - Vascular <u>endothelial necrosis</u> with cadmium May cause ischemic necrosis of the testis
 - Vasoconstriction with serotonin or histamine May cause focal tubular necrosis
- Associated with inflammation and potentially with autoimmune reaction

Epididymis damage

- Vacuolation of epididymal epithelium
 - Lack on androgen
 - Chemical injury, e.g. by oxidosqualene cyclase
- Granulomatous inflammation, e.g. following epithelial necrosis in the caput by cadmium (an endothelial toxin) or α-chlorohydrin (inhibition of fluid resorption)
 - → Breakdown of the blood-epididymis barrier
 - Immunologically competent cells attack sperm (antigenetically foreign)
 - → Sperm granuloma
 - Also seen in ductuli efferentes. Occur there also spontaneously from blindly ending ductuli

Epididymis – a sensitive indicator

- Subtle testicular damage often resulting in germ cell sloughing is generally most apparent from cellular debris in the epididymis.
- Sperm reach
 - Caput within a few days
 - Cauda within 1-2 weeks
 - Cell debris might be present also after initial testicular insult is resolved

Conclusions Topic D: Morphology

- Toxins acting directly (not via endocrine regulation) primarily affect the testis, especially spermatogenesis
- Early findings are often specific for the inflicted damage and may provide insight into the MoA
- Of particular concern, because <u>potentially</u> <u>irreversible</u>, are
 - Stem cell toxicity (indirect assessment)
 - Sertoli cell toxicity
- Epididymal content is an excellent and "historic" indicator of damage of spermatogenesis

Overview

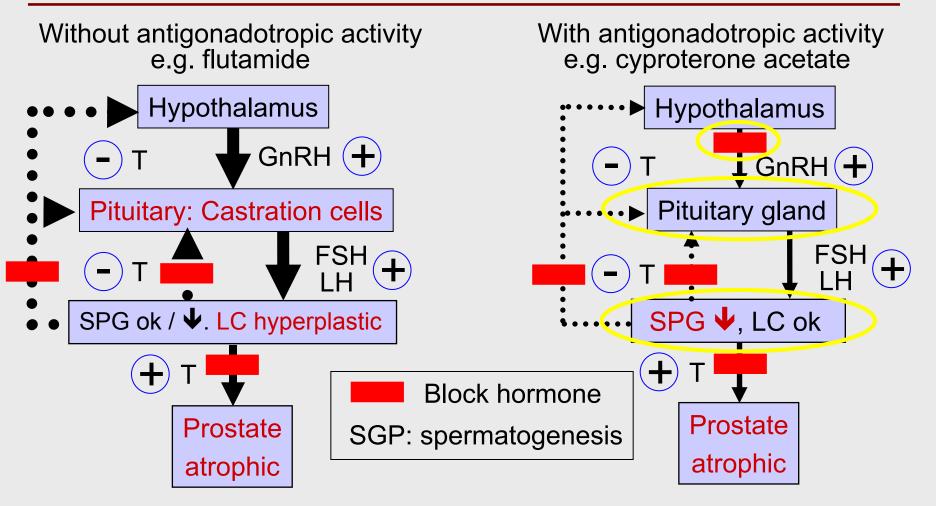
Lecture 2: Practice / Application

- C Recommended approaches for evaluation of MR organs (general methods) 25 min.
 - Including study design and sampling techniques
 - Excluding staging and sperm evaluation
- D Morphologic evaluation of the testis of laboratory animal species - 10 min. *Excluding*
 - Background and age related changes
 - (Non-)neoplastic changes in male reproductive system
- E Endocrine disruption: Guidelines for histopathologic evaluation 10 min.
 - Excluding effects of phytoestrogens of reproductive physiology and pathology

Guidelines – Chemicals

- OECD test guideline 407 for chemicals,1995 Repeated Dose 28-day Oral Toxicity Study in Rodents
 - Preliminary draft updated with Parameters for Endocrine Effects (Revised 18 December 2007)
- Endocrine disruption: a guidance document for histologic evaluation of endocrine and reproductive tests. OECD, May 2008 Website: European Society of Toxicologic Pathology (ESTP) – Guidelines – Testing Strategies. Or directly under

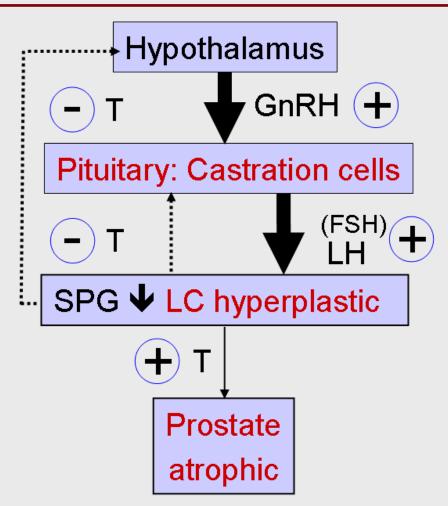
http://www.eurotoxpath.org/guidelines/index.php?id=teststrat


OECD framework for Endocrine Disruptors

- 1. Prioritize testing (if at all) on <u>existing information</u>
- *2. <u>In vitro* testing for mechanism</u>: e.g. QSAR, receptor binding, transcriptional analysis, steroidogenesis, etc.
- *3.* <u>*In vivo* for single endocrine mechanism</u>: e.g. uterotrophic (E), Hershberger (A) assay, other endocrine organs, etc.
- *4. <u>In vivo* for multiple endocrine mechanisms</u>: e.g. enhanced OECD 407 (4 w), pubertal assays, etc.
- *5. <u>In vivo* for other adverse effects</u>: e.g. reprotoxicity studies, etc.

European Medicines Agency - Pharma

- Environmental risk assessment (ERA) for human pharmaceuticals
- Exemptions for certain types of chemicals are overruled when the substance has endocrine active properties
- Trigger value for mandatory testing <u>not relevant for</u> <u>endocrine active substances</u>
- Impact on the environment should <u>not constitute a</u> <u>criterion for refusal</u> of a marketing authorization.


Antiandrogen action - Simplified

Histological photomicrographs on flutamide effect on MR system to be shown

Examples

Inhibition of T biosynthesis

Reduction of testosterone – Testis – 1

- Most sensitive testicular indicator seen within days:
 - Degenerating spc and round spt in stages VII and VIII
 - Retention of elongated spermatids in stages VIII to XII, when they get phagocytized
 - Reduced luminal diameter
- Later changes: degenerating spc and late spt in IX-XIV, a consequence of damage suffered earlier in VII-VIII

Reduction of testosterone – Testis – 2

- □ <u>End stage</u> after approx 2 weeks:
 - Maturation depletion
 - Reduction of mid/late spc and round spt
 - Loss of elongating and mature spt
 - Shrinkage of tubule: less tubular fluid produced
 - Depending of pathogenesis: LC
 Atrophic (e.g. primarily low LH) or
 Hypertrophic (block of steroidogenesis)

Reduction of testosterone – Other organs

- Progressive atrophy of <u>epididymis</u>, starting in caput
- Accessory sex organs: inactive epithelium with decreased secretion and lumina At EM level:
 - Reduction of RER, Golgi and secretory granules
 - Increased size of lysosomes and number of autophagic vacuoles
- Castration cells in <u>pituitary</u> Hypertrophic cells producing gonadotropins including LH and prolactin cells
- Mammary glands may become feminized

Gynecomastia in man

- Benign enlargement of the male mammary glands
- By increased/unopposed estrogen action on breast
- \sim 4–10% of gynecomastia in men due to drugs
- Mechanisms
 - Inhibition of <u>androgen</u> synthesis and/or metabolism (ketoconazole)
 - Antagonism at <u>androgen receptor</u> (flutamide, finastride)
 - Direct action on <u>estrogen receptors</u> by estrogenic drugs (clomiphine)

 - Via damage the <u>testis</u> (anticancer drugs)

Histological photomicrograph on estrogen effect on prostate to be shown

Species differences

- □ Rats lack sex hormone binding globulin
- □ Rats react more sensitively
- Rat Leydig cells have a high density of LH receptors
- Influence of prolactin on LH receptor function in rats
- Presence of GnRH receptors on rat Leydig cells
- Waning endocrine milieu in the aging rat

Conclusions Topic E: Endocrine disrupters

- Endocrine disrupters not only affect the testis but generally also the <u>accessory MR sex</u> <u>organs</u>
- Environmental endocrine disrupters are particularly feared
- For <u>drugs</u> endocrine side effects are a matter of risk evaluation
- Endocrine effects on MR system are <u>often</u> <u>species-specific</u>
- Similar compounds can affect the MR system in <u>different</u> ways

Final Conclusions – 1

- □ Preclinical potentially adverse MR effects are <u>not</u> <u>uncommon</u> and <u>of concern</u> → Sound and comprehensive scientific assessment is a must
- □ Important <u>experimental factors</u>
 - Standard studies (multiple endpoints) often sufficient
 - Good tissue fixation
 - Expert histopathological examination incl. knowledge of staging
 - Confounding factors incl. immature test animals
- Important <u>risk parameters</u>
 - Safety ratio
 - Reversibility
 - Monitorability in man

Final Conclusions – 2

- Identification of <u>primary target</u> might help to establish MoA of MR toxin May need early time points and time-course studies
- □ Often more than one MR target:
 - Use a <u>system's approach</u> (may need e.g. hormonal measurements)
 - Understand <u>patterns</u> of adverse responses
- Affected cell type less important than <u>reversibility</u> Most important: survival of <u>spermatogonia</u> (may be difficult to find in histological sections)
- Hormonally mediated effects are generally <u>reversible</u>, affect early <u>accessory sex organs</u> and are <u>often</u> <u>species-specific</u>