5th Conference of STP-I

Spontaneous and induced lesions of the gastrointestinal tract

- INHAND nomenclature and diagnostic critiera (II) -

Dr. Thomas Nolte, DVM, MSc, F.I.A.T.P. Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach / Riss, Germany

INHAND: Digestive Tract Organ Working Group

Lesions to be presented

All organs of the digestive tract

- Infiltrate vs. inflammation
- Single cell necrosis/apoptosis, necrosis

Pancreas

- Degranulation, acinar cell
- Atrophy, acinar cell
- Metaplasia, ductular

Salivary glands

- Tumor, mixed, malignant
- Myoepithelioma, malignant

Gastrointestinal tract

- Leiomyoma
- Gastrointestinal Stromal Tumor (GIST)

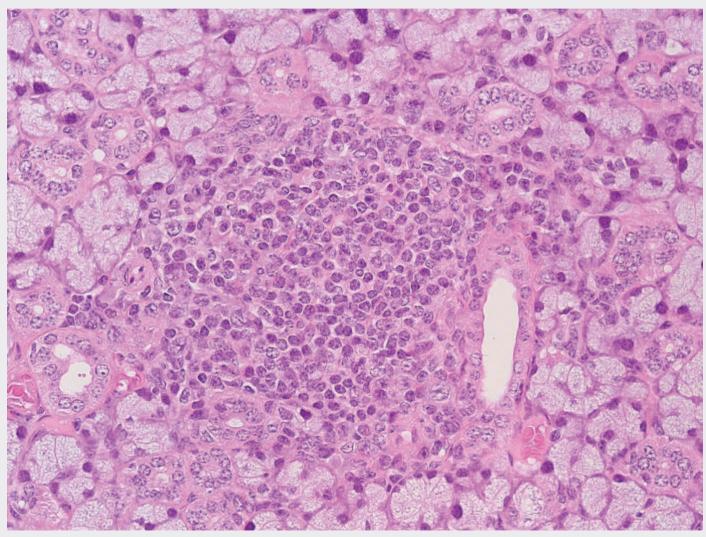
Salivary glands, pancreas

Infiltrate

Modifiers:

Type of inflammatory cell that represents the predominant cell type in the infiltrate

Pathogenesis.


Infiltration with neutrophils (Infiltrate, neutrophil), eosinophils (Infiltrate, eosinophil), mononuclear cells (Infiltrate, mononuclear cell) or a combination of more than one type (Infiltrate, mixed) present without other morphological features of inflammation, e.g. hemorrhage, edema, fibroplasia.

- Focal, multifocal or diffuse.
- Presence of mononuclear or polymorphonuclear leukocytes but without other histological features of inflammation like edema, congestion or necrosis.
- Usually no acinar cell degranulation or mucus depletion.

Salivary glands

Infiltrate, mononuclear cell

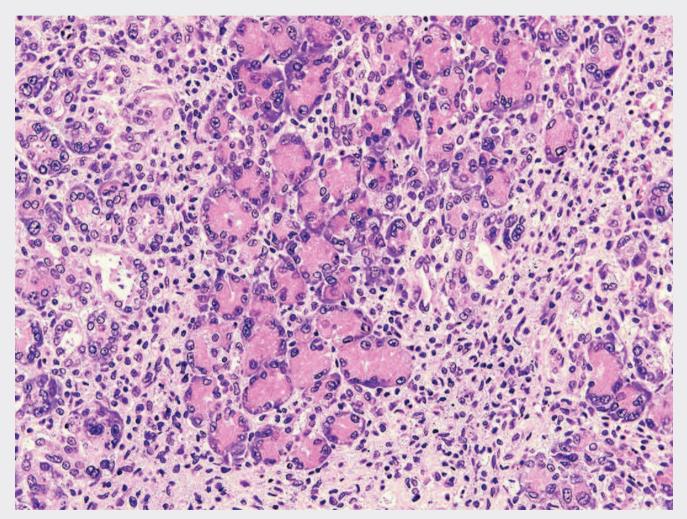
Salivary glands, pancreas

Inflammation

Modifier:

Type of inflammatory cell that represents the predominant cell type in the inflammation

Pathogenesis.


Infiltration with neutrophils (Inflammation, neutrophil) or mononuclear cell (Inflammation, mononuclear cell) or a combination (Inflammation, mixed) with additional histological features of inflammation e.g. hemorrhage, edema, fibroplasia.

- Focal (salivary glands), focally extensive or diffuse, involving predominantly the interstitium, but also acinar cells and intra- or inter-lobular ducts.
- Infiltrate of mononuclear or polymorphonuclear leukocytes into the gland parenchyma.
- Presence of other histological criteria of inflammation, e.g. hemorrhage, edema, fibroplasias.

Inflammation, mononuclear cell

Revision of cell death terminology

The starting point:

- Different approaches in different organ systems; examples:
 - Testis: Degeneration, germ cell syn. Single cell necrosis, apoptosis
 - Kidneys, epididymis, accessory sex glands: Single cell necrosis syn. Apoptosis
 - Integument: Recommendation not to use the term "apoptosis" unless shown by special techniques; instead: Necrosis, single cell type
- In scientific community outside toxicologic pathology, strict differentiation between single cell necrosis and apoptosis; shared by several experts in different INHAND OWGs
- \rightarrow INHAND-GESC concluded that single cell necrosis and apoptosis are not synonymous
- → INHAND-GESC established a Working group "Apoptosis/necrosis" with the aim to readdress the nomenclature and diagnostic critieria of cell death in routine toxicologic pathology

Revision of cell death terminology

The approach of the INHAND necrosis/apoptosis Working Group – applied to the digestive tract (DRAFT):

Death of individual cells:

- 1. Single cell necrosis
- 2. Apoptosis
- Single cell necrosis/apoptosis

 (death of individual cells that is not unequivocally single cell necrosis or
 apoptosis; or both single cell necrosis and apoptosis are present)

Death of groups of cells

4. Necrosis

Apoptosis

Pathogenesis.

Gene regulated, energy dependent process leading to formation of apoptotic bodies which are phagocytosed by adjacent cells.

- Single cell death or small clusters of cells.
- Cell shrinkage and convolution.
- Cytoplasmic condensation (hypereosinophilia).
- Chromatin condensation (pyknosis) and peripheralization in early apoptosis.
- Karyorrhexis with fragmentation of condensed chromatin.
- Intact cell membrane.
- Formation of blebs to produce apoptotic bodies.
- Cytoplasm retained in apoptotic bodies.
- Phagocytosis of apoptotic bodies tissue macrophages or other adjacent cells.
- Lack of inflammation.

Apoptosis

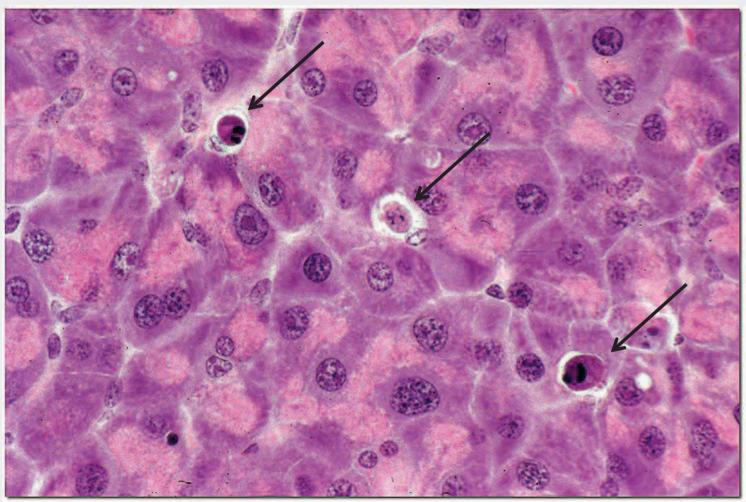


Image kindly provided by NTP

Single cell necrosis

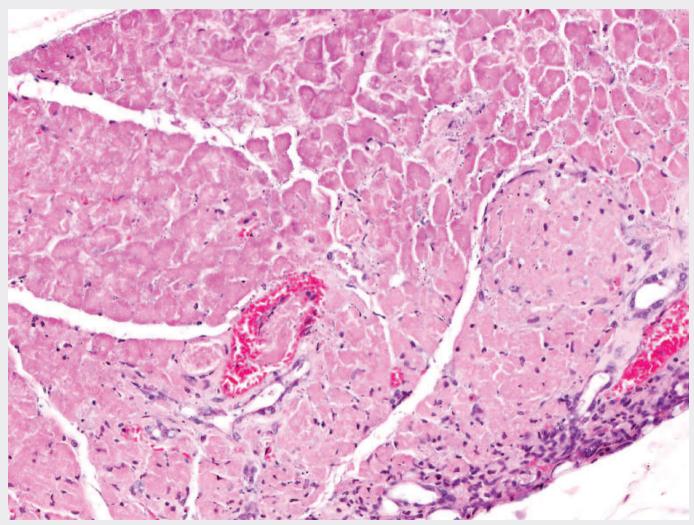
Pathogenesis.

Unregulated, energy independent, passive cell death with leakage of cytoplasm into surrounding tissue and subsequent inflammatory reaction.

- Often contiguous cells.
- Cell and organelle swelling.
- Pyknosis (nuclear condensation: minor component).
- Karyorrhexis (nuclear fragmentation).
- Karyolysis (degradation of nuclear material).
- Cytoplasmic blebs.
- Plasma membrane rupture.
- Intracellular contents released into surrounding tissue.
- Inflammation usually present.

Necrosis

Diagnostic key features:

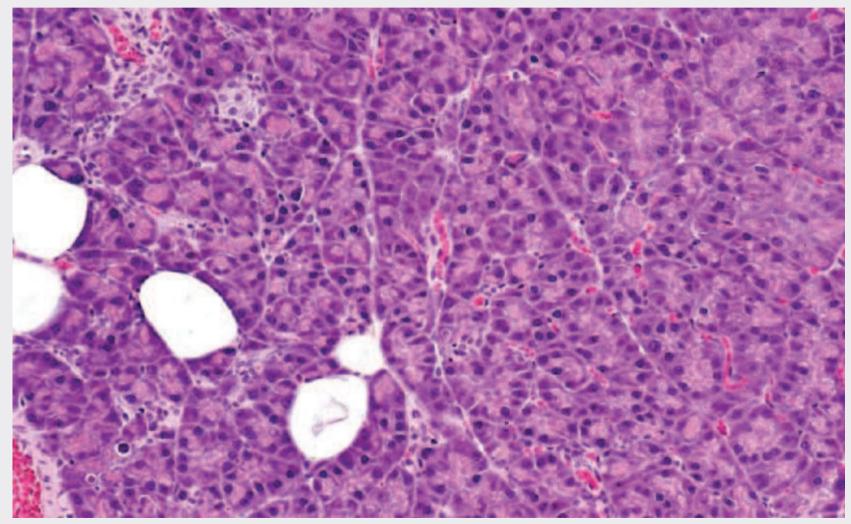

- Focal, lobular, or diffuse.
- Swollen cells with eosinophilic flocculated cytoplasm.
- Early lesions may retain cellular outlines.
- Pyknotic or indistinct nuclei with loss of chromatin to total loss of nuclei.
- Inflammatory cell infiltrate, edema and fibrin may surround the necrotic cells, but necrosis is still predominant.
- Destruction of adjacent fat cells and fat necrosis in advanced and exaggerated stages.

Differential diagnoses:

- Single cell necrosis/apoptosis: Scattered, isolated cells affected, forming apoptotic bodies; or isolated swollen cells with plasma membrane rupture (single cell necrosis).
- Inflammation, acute: Infiltrates of inflammatory cells, edema, and fibrin predominate; necrosis may be present, but is a minor component.

Necrosis

Secretory depletion, acinar cell


Pathogenesis: Decrease of acinar cell zymogen granules leading to shrunken acinar cells with increased basophilia.

Diagnostic features

- Focal, lobular, or diffuse lesion.
- Reduced acinar diameter.
- Partial or complete loss of acinar cell zymogen granules leading to a reduced cell size and increased basophilia.
- Lack of fibrosis or adipocyte infiltration.
- Islets of Langerhans are unaffected.

Secretory depletion, acinar cell

INHAND Digestive Tract - Thomas Nolte

Secretory depletion, acinar cell

Differential diagnoses:

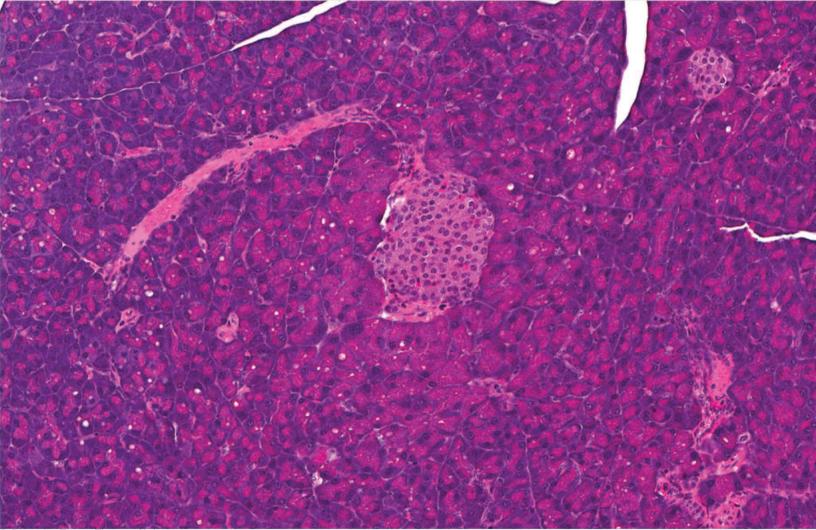
Atrophy, acinar cell:

Loss of acinar cell basophilia and decreased zymogen granules resulting in small acini lined by **small columnar cells almost completely devoid of cytoplasm** and with a small and inactive nucleus; may be accompanied by fibrosis and minimal mononuclear cell infiltrates.

Peri-insular halos:

Tele-insular acinar cells have relatively less zymogen granules and more RER when compared to peri-insular acinar cells.

Peri-insular halos


Synonyms: Eosinophilic change; focal eosinophilic hypertrophic cells

Pathogenesis: Hypertrophy of pancreatic exocrine acinar cells surrounding the Islets of Langerhans.

- Hypertrophy of exocrine pancreatic acini surrounding the islets of Langerhans.
- Acinar cells with more abundant cytoplasmic volume with larger zymogen granules than tele-insular acinar cells (located distantly from the islets).
- Larger nuclei with more nucleoli than tele-insular acinar cells.

Peri-insular halos

INHAND Digestive Tract - Thomas Nolte