# Digestive tract carcinogenic toxicity in rodent models

## Suzui M

Department of Molecular Toxicology Graduate School of Medical Sciences and Medical School Nagoya City University **Preneoplastic lesions of the colon** 

Aberrant crypt foci (ACF)

 $\beta$ -Catenin accumulated crypts (BCAC)

Mucin depleted foci (MDF)

## **Tumors of the colon**

## **Epithelial tumors**

Polyps (a) Hyperplastic

(b) Adenoma

Carcinoma in situ (CIS)

Adenocarcinoma

Non-epithelial tumors

Sarcoma

#### Rat colonic mucosa



## **Methylene blue staining**

#### ACF containing more than two aberrant crypts



1 aberrant crypt

2 aberrant crypts

4 aberrant crypts

Methyelene blue staining, rat

#### ACF containing more than two aberrant crypts



2 aberrant crypts

3 aberrant crypts

4 aberrant crypts

#### HE staining, rat

#### Human colon mucosa



## **Methylene blue staining**

## Aberrant crypt foci (ACF) in human colon



#### Mucin depleted foci (MDF)



## Mutation status of $\beta$ -catenin gene in BCAC/ACF/MDF

|                                                                            | Frequency | Mutation                                                      |                                                               |
|----------------------------------------------------------------------------|-----------|---------------------------------------------------------------|---------------------------------------------------------------|
| ACF                                                                        | 7/30      | $^{32}A \rightarrow G (Asp \rightarrow Gly)$                  |                                                               |
|                                                                            | (23%)     | $^{34}G { ightarrow} T$ (Gly $ ightarrow$ Val)                |                                                               |
| Ochiai et al. Am J Pathol 2003<br>Suzui et al. J Toxicol Sci 2014 (review) |           | <sup>36</sup> C $\rightarrow$ T (His $\rightarrow$ Tyr)       |                                                               |
| BCAC                                                                       | 10/15     | <sup>28</sup> A $\rightarrow$ T (GIn $\rightarrow$ His)       | $^{34}G \rightarrow A (Gly \rightarrow Glu)$                  |
|                                                                            | (67%)     | <sup>29</sup> C $\rightarrow$ G (Ser $\rightarrow$ Cys)       | ${}^{34}\text{G}{ ightarrow}\text{T}$ (Gly $ ightarrow$ Stop) |
|                                                                            |           | <sup>30</sup> T $\rightarrow$ C (Tyr $\rightarrow$ His)       | <sup>41</sup> A $\rightarrow$ T (Thr $\rightarrow$ lle)       |
| Yamada et al. Cancer Res 2000<br>Suzui et al. J Toxicol Sci 2014 (review)  |           | $^{32}G \rightarrow A (Asp \rightarrow Asn)$                  |                                                               |
| MDF                                                                        | 7/28      | $^{32}G \rightarrow A (Asp \rightarrow Asn)$                  |                                                               |
|                                                                            | (25%)     | $^{33}C \rightarrow T \text{ (Ser} \rightarrow \text{Phe)}$   |                                                               |
|                                                                            |           | ${}^{37}C \rightarrow T \text{ (Ser} \rightarrow \text{Phe)}$ |                                                               |
| Femia et al. Int J Cancer 2005<br>Suzui et al. J Toxicol Sci 2014 (review) |           | <sup>41</sup> C $\rightarrow$ T (Thr $\rightarrow$ IIe)       |                                                               |

#### **Procedure of detecting ACF or MDF**



HE stain

#### ACF

#### BCAC

#### MDF



#### ACF: aberrant crypt foci BCAC: β-catenin accumulated crypts MDF: mucin depleted foci

## Summary of preneoplastic lesions in the animal model

|      | Staining method                                    | Macroscopic/<br>microscopic findings                                                           |  |
|------|----------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| ACF  | Methylene<br>blue (0.2%)                           | Increased cryptical size<br>Thicker epithelial lining<br>Increased pericryptical zone          |  |
|      |                                                    | Hypercellularity of cells with or without dysplasia                                            |  |
| BCAC | IHC                                                | Accumulation of<br>cytoplasmic/nuclear<br>β-catenin protein                                    |  |
| MDF  | High-iron<br>diamine<br>Alcian blue<br>(1%, pH2.5) | Foci of crypts with scarce<br>or absent mucin, when<br>colon tissue was stained<br>with HID-AB |  |

Suzui et al. J Toxicol Pathol 2014

#### **Distribution of ACF/MDF/tumor**



#### **Possible relationship of preneoplastic lesions**



Yoshimi, Suzui et al. Cancer Sci 2004

# Multistage model of colon carcinogenesis



**Nuclear** β-catenin

## **β-Catenin-TCF signaling pathway**





#### MAM: methylazoxymethanol acetate

#### **MAM-induced rat colon carcinoma**



Suzui et al. Mol Carcinog, Cancer Lett, 1995, 1997, 1999, 2001, 2002







## **Carcinogenesis model-3**

## **Experimental protocol**



MAM: methylazoxymethanol acetate

**1-HA: 1-hydroxyanthraquinone** 

Suzui et al. Mol Carcinog 1999, 2001

## Adenocarcinoma



# **β-CateninAPC mutations**



## $\beta$ -Catenin mutation spectrum in the rat colon tumor



Suzui et al. Mol Carcinog 1999, 2001, Dashwood, Suzui et al. Cancer Res 1998 Suzui, Yoshimi. New insights into molecular carcinogenesis 2005 Kinjo, Suzui et al. Anticancer Res & J Exp Clin Cancer Res 2006

## **Carcinogenesis process of Min mouse**



Normal mucosa



Unicryptic adenoma



Unicryptic adenoma (advanced)



Microadenoma



Adenoma



#### **AOM:** azoxymethane

Suzui et al. Cancer Lett 2002

## **Genotyping of Min mice**

#### +/+ +/+ Min/+ +/+ WT Min







## Incidence of colon tumors in AOM-treated Min mice Incidence

| Treatment | Tot           | al Ac              | d CIS           | Adc           |  |  |  |
|-----------|---------------|--------------------|-----------------|---------------|--|--|--|
| ΑΟΜ       | 14/           | 15 5/ <sup>-</sup> | 15 5/15         | 14/15*        |  |  |  |
| None      | 10/           | 15 4/ <sup>·</sup> | 15 2/15         | 6/15          |  |  |  |
|           | Multiplicity  |                    |                 |               |  |  |  |
|           | Total         | Ad                 | CIS             | Adc           |  |  |  |
| ΑΟΜ       | 2.2±1.4*      | 0.3±0.4            | 4 $0.3 \pm 0.4$ | 1.6±1.0*      |  |  |  |
| None      | $1.0 \pm 0.9$ | $0.4 \pm 0.3$      | 8 $0.1 \pm 0.3$ | $0.4 \pm 0.7$ |  |  |  |

Appendix

# Digestive tract carcinogenic toxicity in rodent models

Suzui M

Department of Molecular Toxicology Graduate School of Medical Sciences and Medical School Nagoya City University Normal structure of gastrointestinal (GI) tract

1. Tongue

2. Esophagus

3. Stomach

4. Small/large intestine

## **GI tract (rat)**

Duodenum -

## Small intestine

#### Cecum



## **Tongue (rat)**



#### Normal squamous epithelium



# Squamous epithelium

#### **Muscular layer**

## **Esophagus (rat)**



Stratified squamous epithelium

## Lamina propria mucosa

Lymphatic follicle

Muscularis propria

Submucosa

## Stomach (rat)

#### **Forestomach**







Stratified squamous epithelium

Muscularis mucosa

Muscularis propria







Lymphatic follicle

Myenteric plexus

## **Small intestine (mouse)**



### Colon



## Colon (rat)

**Goblet cell** 

Crypt

Muscularis propria