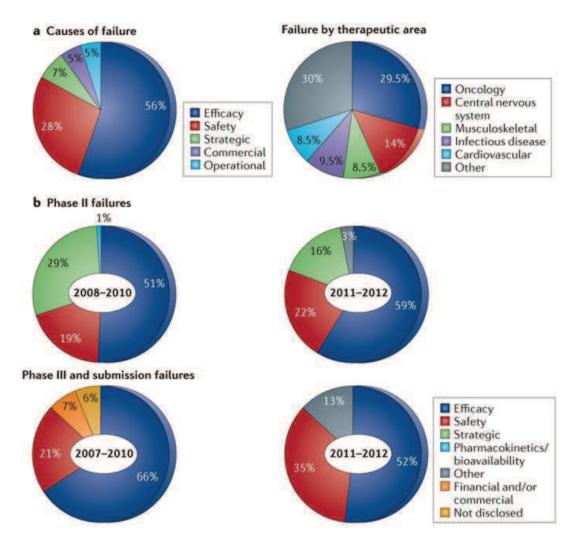
BIOMARKERS FOR DIGE\$TIVE TRACT TOXICITY

Dr. Subba R Chintala Charuvi Covance Inc. USA

Lus Intestine


OUTLINE

Introduction

- Reasons for attrition in drug R&D: digestive tract liabilities
- > Evolving role of biomarkers
- > Digestive tract toxicity biomarkers
- > Application in a pre-clinical model
- Utility of biomarkers in diagnosis and treatment of Inflammatory bowel disease
- Conclusion

REASONS FOR ATTRITION IN R&D

Nature Reviews | Drug Discovery

Impact of adverse effects of drugs by organ function throughout the pharmaceutical life cycle

.

2

0

Phase	'Nonclinical'	Phase I	Phase I-III	Phase III/ Marketing	Post- Marketing	Post- Marketing
Information:	Causes of athition	Serious ADRs	Causes of athilion	ADRs on label	Serious ADRs	Withdrawal from Latin
Source:	Car (2006)	Sibille et al. (1998)	Olson et al. (2000)	BioPrint® (2006)	Budnitz et al. (2006)	Stevens & Baker (2008)
Sample size:	88 CDs stopped	1,015 subjects	82 CDs stopped	1,138 drugs	21,298 patients	47 drugs
Cardiovascular:	27%	9%	21%	36%	15%	45%
Hepatotoxicity:	8%	7%	21%	13%	0%	32%
Haematology/BM:	7%	2%	4%	16%	10%	9%
Nervous system:	14%	28%	21%	67%	39%	2%
Immunotox; photosensitivity:	7%	16%	11%	25%	34%	2%
Gastrointestinal:	3%	23%	5%	67%	14%	2%
Reprotox:	13%	0%	1%	10%	0%	2%
Musculoskeletal:	4%	0%	1%	28%	3%	2%
Respiratory:	2%	0%	0%	32%	8%	2%
Renal:	2%	0%	9%	19%	2%	0%
Genetic tox:	5%	0%	0%	0%	0%	0%
Carcinogenicity:	3%	0%	0%	1%	0%	0%
Other:	0%	0%	4%	16%	2%	2%

The various toxicity domains have been ranked first by contribution to products withdrawn from sale, then by attrition during clinical development. 1-9%

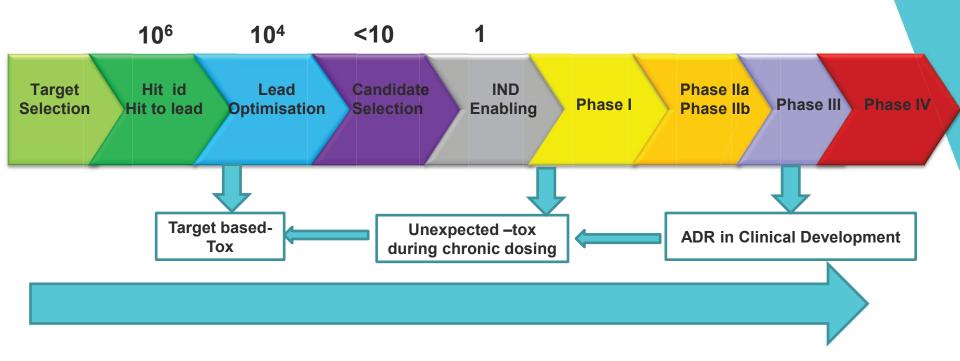
0%

s-

10-19%

>20%

Adapted from Redfern WS et al. SOT 2010



Digestive Tract toxicity Assessment

Function	Injury		
Established	Established		
Gastric emptying	Macroscopic (ulcer index)		
Gastric secretion	Histopathology		
Intestinal motility			
Emerging	Emerging		
Endoscopy	Endoscopy (CTE)		
Capsule – pH, pressure	Capsule		
Strain gauge for contraction	BIOMARKERS		
In silico (PBPK modeling)			

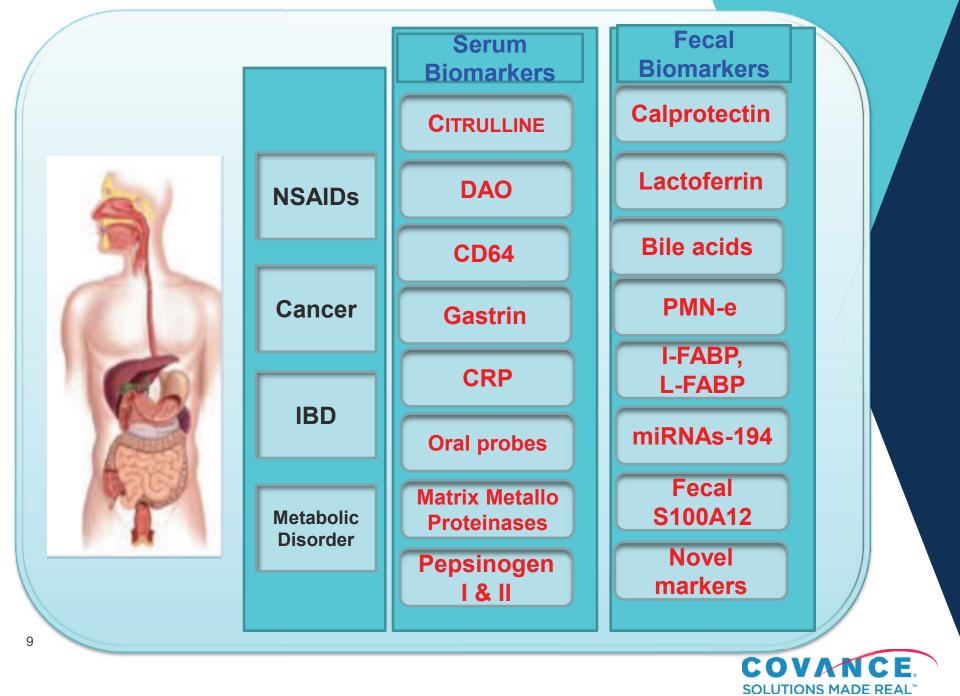
EVOLVING USE OF BIOMARKERS

The ultimate goal is to provide drug R&D with a toolbox of qualified Biomarkers that perform well for drug candidates in animals studies and also to monitor clinical safety and efficacy.

BIOMARKER

"A characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention."

Biomarkers Definition Working Group, NHI, Clin Pharmacol. Ther 2001,69:89



"WHAT IS AN IDEAL BIOMARKER"

- □ Specific
- Sensitive
- Predictive
- Robust
- Bridge pre-clinical & clinical

Proteomics
Genomics
Metabolomics
Imaging

CITRULLINE:

- Intermediate metabolic aa produced by the enterocytes of small intestine
- Correlates with chemo-therapeutically reduced enterocytes mass
- Challenging assay (HPLC-MS), highly specific, no enzymatic assay

DIAMINE OXIDASE (DAO):

- Increased DAO levels with the increase in severity of small intestine lesion induced by anticancer drugs
- Limitations of low level of DAO and masked by heparin stimulation

CD64:

- Useful neutrophilic biomarker for digestive tract injury with inflammatory and functional disease of intestine
- CD64 expressed significantly higher in IBD patients and responds well to intervention

LOGO GOES HERE

GASTRIN:

- Produced by endocrine G cells of gastric antrum and duodenum in response of digestive stimuli
- Increased gastrin levels associated with duodenal ulcers, bacterial infections and tumors
- Acidity of gastric lumen will decrease gastrin levels.

C-REACTIVE PROTEIN (CRP):

- Hepatic protein produced in response acute and chronic inflammation
- Reliable biomarker for the disease severity and progression in UC patients
- MATRIX METALLOPROTEINASES: Tissue specific markers for chemotherapyinduced gut injury

PEPSINOGEN I & II:

- Pepsinogen I & II produced by gastric mucosa
- Progression of gastritis to acute and pangastritis is associated with increase levels of serum Pepsinogen II

LOGO GOES HERE

CALPROTECTIN:

- 36.5 Kda nonglycosylated, calcium binding protein, sensitive, stable marker and plays a central role in neutrophil defense
- Directly related to influx of neutrophils to the digestive tract damage
- It can be measured by standard ELISA (humans)

LACTOFERRIN:

- Iron binding protein secreted by mucosa membrane and a major component of PMN neutrophils
- Useful marker for intestinal inflammation

BILE ACIDS:

 Cathartic effect of excessive fecal bile acids may cause due to chronic diarrhea

□ POLYMORPHONUCLEAR NEUTROPHIL ELASTASE:

• Neutral proteinases and mediator of inflammation

LOGO GOES HERE

□ I-FABP AND L-FABP:

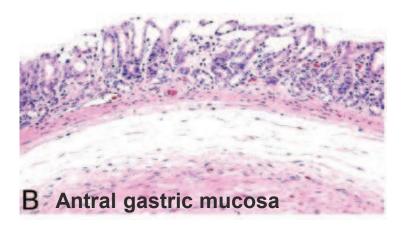
 Small fatty-acid-binding protein (FABP) are released from digestive enterocytes after cellular damage

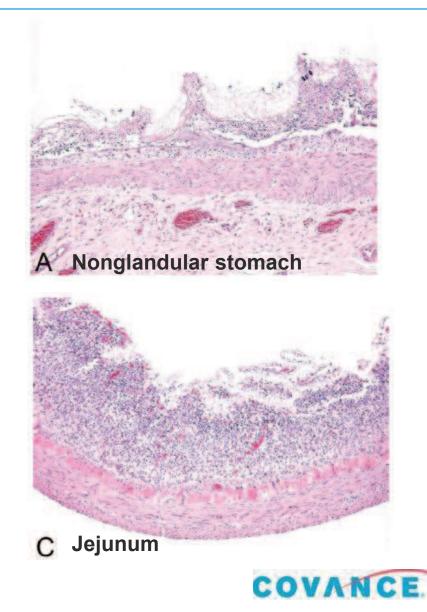
MICRO RNA:

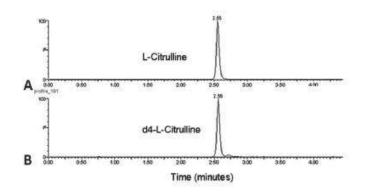
- Small, endogenous noncoding RNAs, which act as post-transcriptional regulators of genes
- o miRNA named as miR-94 expressed in small intestine and colon
- GI-enriched miRNA-94 is an indicative of digestive toxicity

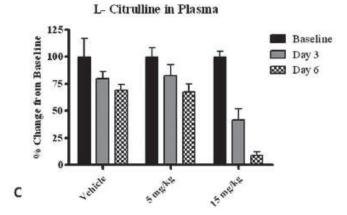
FECAL S100A12:

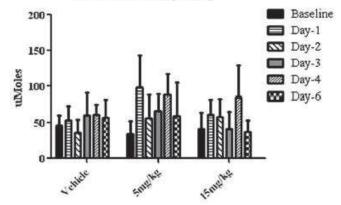
- Calcium binding proteins, activates NF-kB signal transduction and enhances cytokine release
- Fecal S100A12 has been detected in IBD patients


■ NOVEL BIOMARKERS:

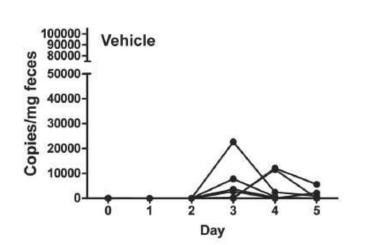

 M2-pyruvate kinases, Adipsin- potential marker for Notch/Hes-1 signaling, increased expression of neutrophil activation markers, CD177
 Logo and CEACAM1


Preclinical Toxicity model: rats


- Wistar rats (n=8/group)
- PAK4 (p21-activated kinase4) inhibitor at 5 mg/kg and 15 mg/kg
- Orally, qd; 5 days
- Clinical signs, BW daily and blood and urine was collected

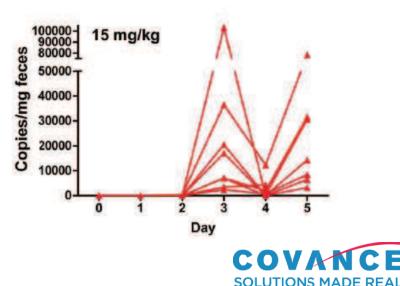


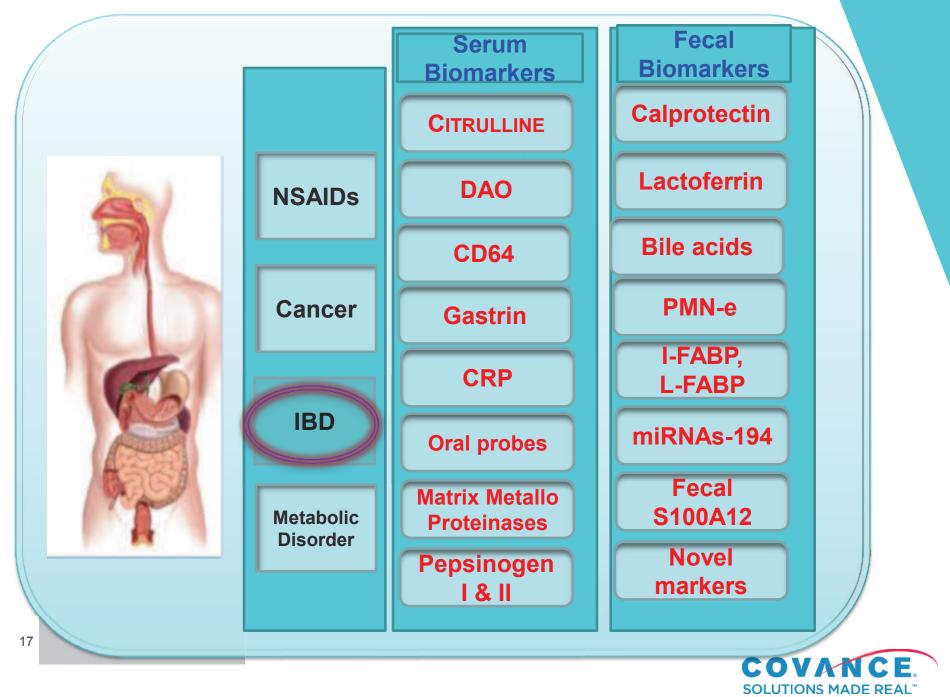
Preclinical Toxicity model: rats

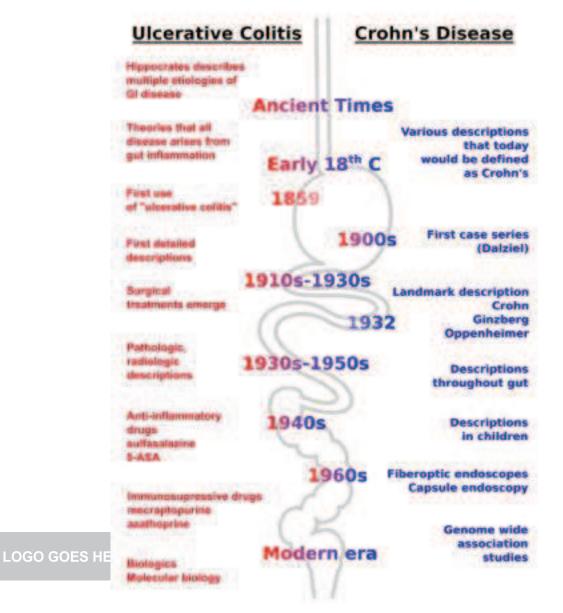

Fecal Bile Acid (FBbw)

John-Bapiste et al. Tox Path 2012,40:482

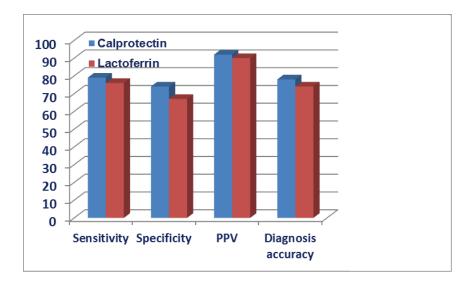
Preclinical Toxicity model: rats

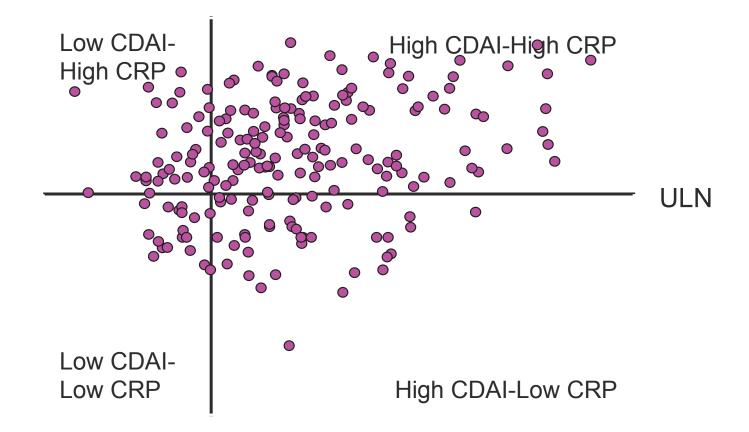



- Identification of reliable digestive tract biomarkers such as blood Citrulline and fecal miR-194
- ✓ Blood DAO, fecal bile acids and fecal Calprotectin were undetectable.
 - Detection of biomarkers for digestive tract toxicity: limitations and gaps.

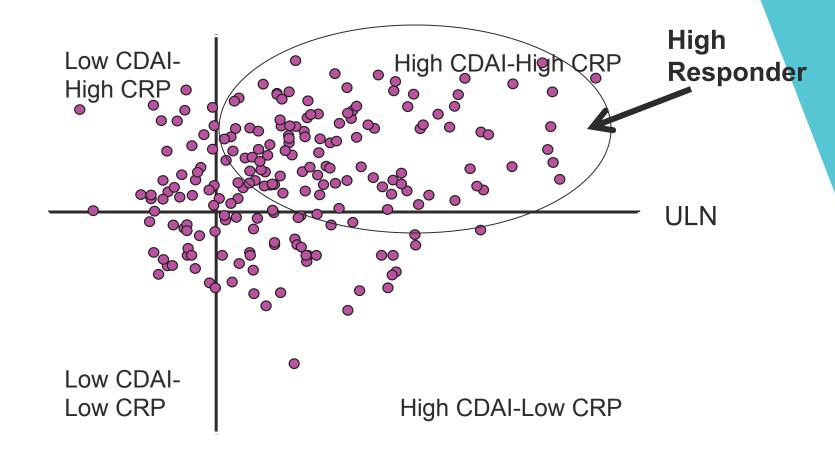

LOGO GOES HERE

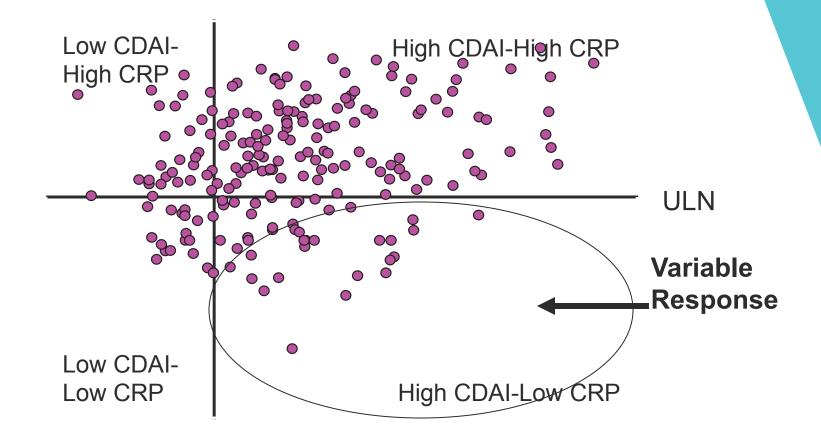
John-Bapiste et al. Tox Path 2012,40:482


A tale of two diseases: Inflammatory Bowel disease

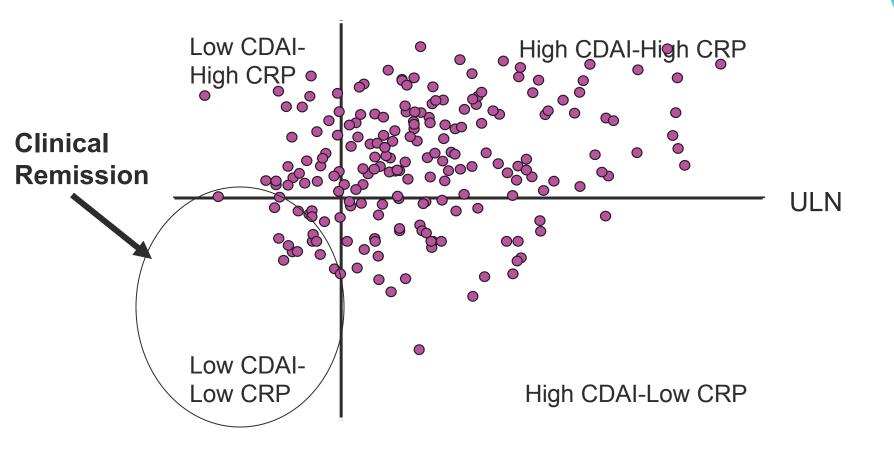

Biomarkers in managing IBD

- Elevated serum CRP was associated with increase in inflammation and presence of active disease of UC patients measured by ilecolonoscopy. CRP levels >12 mg/L is indicative of severe and extensive disease^{1,2}
- Fecal Lactoferrin and Calprotectin were useful tools in detecting bowel inflammation in symptomatic UC patients ^{3,4}

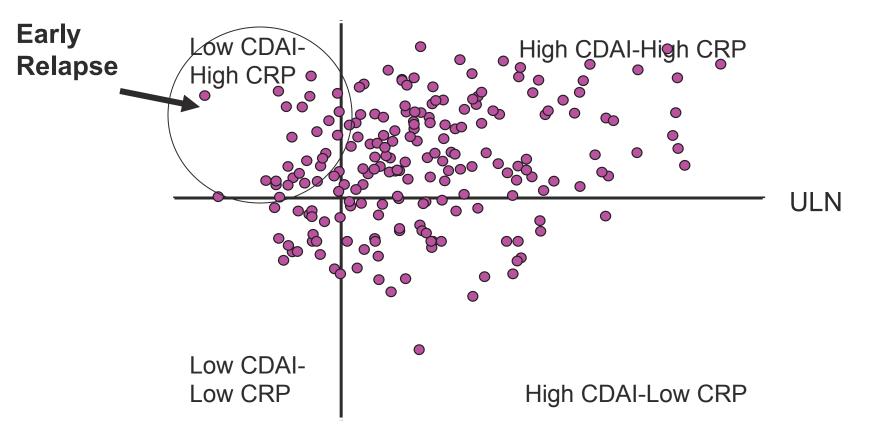

- 1. Solem et al. Inflamm. Bowel Dis. 2005, 11:707
- 2. Pepys et al. J Clin Invest. 2003, 111:1805
- 3. Kane et al. Am J Gastroenterol. 2003, 98:6
- ¹⁹4. Schoefer et al. Inflamm.Bowel Dis. 2009, 15:1851



LOGO GOES HERE



LOGO GOES HERE



LOGO GOES HERE

LOGO GOES HERE

LOGO GOES HERE

Conclusions CRP

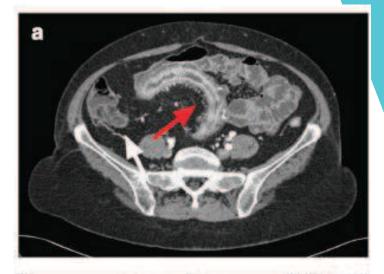
- ✓ CRP is a predictor of placebo response
- Efficacy signals in recent clinical trial may have been obscured by placebo responses in CRP_{low} patients.

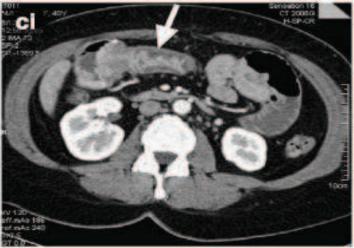
LOGO GOES HERE

EMerging Biomarkers in IBD (EMBARK study)

- UC (n=107) and CD (n=157) underwent ileocolonoscopy (ICO) and subset of CD (n=66) underwent computed tomography enterography (CTE).
- Serum and fecal biomarkers were evaluated and correlated with inflammation scores.

Faubion et al. Am. J Gastroenterology 2013, 108:1891


UC patients: Evaluation of different biomarkers in correlation with endoscopic scores


Biomarker	P value	Biomarker	P value
Fecal lipocalin	1.48E-07	MMP1	0.005
Fecal lactoferrin*	7.67E-07	CXCL1*	0.022
Fecal calprotectin*	3.15E-06	YKL40*	0.034
CRP*	2.84E-05	MSP	0.124
MMP9	0.0001	sICAM-1	0.163
MMP8	0.0003	Anti-ASCA IgG*	0.167
MMP3*	0.001	IFN-γ*	0.181
RegIII*	0.003	MMP7*	0.234
SAA1*	0.003		

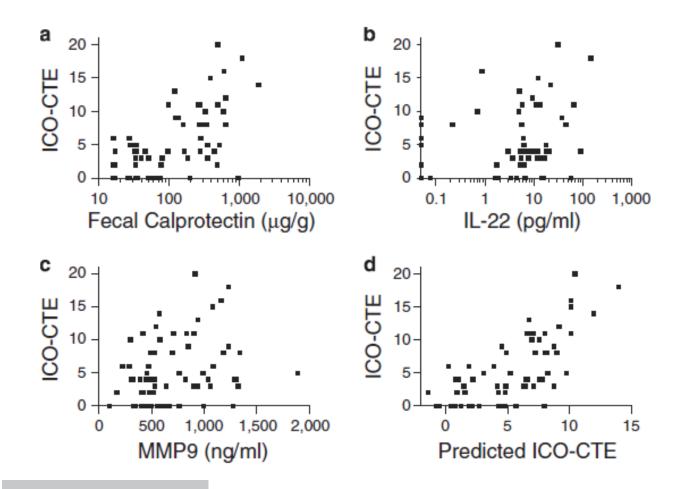
CRP, C-reactive protein; IFN, interferon; IgG, immunoglobulin G; MMP, matrix metalloproteinase; sICAM-1, soluble intracellular adhesion molecule-1; UC, ulcerative colitis.

All biomarkers were measured in blood unless specified as fecal biomarkers. Biomarkers with a skewed distribution were log transformed before analysis and are marked with an asterisk (*).

Faubion et als Am. J Gastroenterology 2013, 108:1891

CD patients: Evaluation of different biomarkers in correlation with endoscopic scores

Biomarker	r	P value	Biomarker	r	P value
Fecal calprotectin*	0.613	5.65E-08	MADCAM	-0.199	0.112
Fecal lactoferrin*	0.567	1.06E-06	IL-6	0.18	0.152
Fecal lipocalin	0.504	1.86E-05	Bv8	0.172	0.17
MMP3*	0.408	0.001	MSP	-0.168	0.18
CXCL13*	0.305	0.014	Anti-ASCA IgG	0.163	0.193
MMP9	0.283	0.023	sCD14	0.162	0.2
PDGF-BB	0.278	0.025	β2 Microglobulin	0.159	0.205
IL-22*	0.26	0.036	Anti-Cbir Ig	0.149	0.237
sIL2R*	0.224	0.072	MMP1	0.134	0.29
CRP	0.21	0.091			

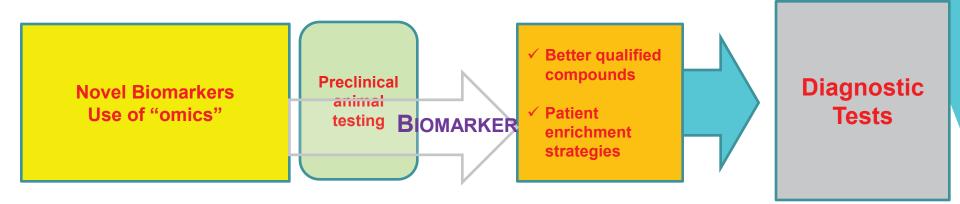

CRP, C-reactive protein; CTE, computed tomography enterography; ICO, ileocolonoscopy; IFN, interferon; IgG, immunoglobulin G; IL-6, interleukin-6; MMP, matrix metalloproteinase; PDGF-BB, platelet derived growth factor-BB.

All biomarkers were measured in blood unless specified as fecal biomarkers. Biomarkers with a skewed distribution were log transformed before analysis and are marked with an asterisk (*).

LOGO GOES HERE Faubion et al. Am. J Gastroenterology 2013, 108:1891

Relationship of top biomarkers with ICO-CTE

Faubion et al. Am. J Gastroenterology 2013, 108:1891


What is new here?

- Combining ICO with CTE provides a more accurate assessment of the overall inflammatory burden
- Fecal Calprotectin and serum MMP9 correlated with the disease activity in UC patients
- Fecal Calprotectin, serum MMP3 and serum IL-22 are directly related with increased severity of the CD patients

LOGO GOES HERE

Biomarkers connect Bench to Bedside

LOGO GOES HERE

Confidential E

31

LOGO GOES HERE

"I'm afraid that your irritable bowel syndrome has progressed. You now have furious and vindictive bowel syndrome."

