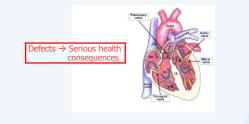


ORGANIZED BY

BVSc, MVSc, PhD, Diplomate ACVP, Diplomate ABT Director, Pathophysiology GlaxoSmithKline, RTP, NC 27709


Fourth STP-I Conference, 1-3 November 2012

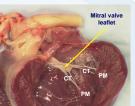
Points to cover

- Heart valve outlook
 - Comparative functional histology
- Drugs known to cause valvulopathy in humans & pathogenesis
- Animal models to screen drug-induced valvulopathy?

Heart valves

- Four heart valves
 - Semilunar valves = aortic & pulmonary valves
 - Atrioventricular valves = mitral & tricuspid valves
- Play a critical role in *unidirectional hemodynamic flow*

1


Heart valves

- Screening of drug-induced valvular effects Preclinical toxicity studies
- Commonly used preclinical species Gross evaluation of heart valves

🗹 Dogs, non-human primates

Atrioventricular (AV) valves: Mitral & Tricuspid valves



Tricuspid valve, dog

Mitral valve, dog

Valvular apparatus – annulus, leaflets, chordae tendineae (CT) & papillary muscle (PM)

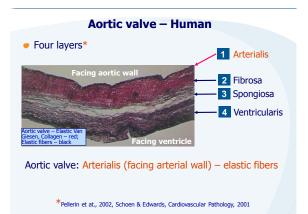
Semilunar valves: Aortic & Pulmonary valves

Aortic valve, Dog

Pulmonary valve, Dog

Histology of heart valves

- Described inconsistently
 - Veterinary medicine
- Deficiencies Rodents
- □ Valvular cell-types & functional updates


^aLiu et al. (2007). Am J Pathol; Schoen FJ (2005). Cardiovascular Pathol; Schoen FJ (2005). Robbins and Cotran Pathological Basis of Disease, 7th ed.

-		
Ventricle	Predominant component	Function
Fibrosa	Dense collagen fibers, ~ Valvular Interstitial Cells (VICs) & very fine elastic fibers	Provide strength, stiffness & maintain coaptation during diastole, prevents regurgitation (mechanical integrity)
Spongiosa	Glycosamino- glycans, ~ Loose collagen fibers & VICs	Absorb shear forces & cushion shock between layers during cyclic valve motion (shock absorber)
Aortic valve – Elastic Van	s Elastic fibers & ~ VICs	Extend in diastole & contract in systole
Giesen, Collagen – red; Elastic fibers – black		a contract in systole

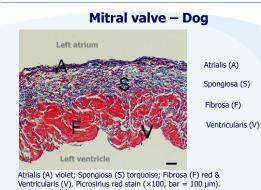
3

Functional Histology of Heart Valves - Human

Heart valves (Veterinary Histology)

Heart valves:

- Four layers to
- > <u>No mention</u> of specific layers


Examples: Atrioventricular valves

- Two layers[©]
 - (1) Spongiosa (Stratum spongiosum)
 - (2) Fibrosa (Stratum fibrosum)
 [©]Dellmann's Textbook of Veterinary Histology, 2006
 [©]Jubb, Kennedy & Palmer's Pathology of domestic animals, 2007
- No specific mention of layers[®] Fibrous core, also known as fibrosa

[©]Handbook of Toxicologic Pathology, 2002

 2009 Publications* – Four layers (atrialis, spongiosa, fibrosa & ventricularis)

> *Aupperle et al. (2009). J Comp Pathol Aupperle et al. (2009). The Veterinary Journal

*Aupperle et al. (2009). J Comp Pathol; Aupperle et al. (2009). The Veterinary Journal

Valves = Cells & Extracellular matrix

- Valvular cells = I. Valvular Endothelial Cells & II. Valvular Interstitial Cells
- I. Valvular Endothelial Cells¹ (VECs)
 - Lining valvular surface; highly responsive to chemicals & mechanical forces
 - Display heterogeneity¹ Differences in gene expression (~ 400 genes) profiles & phenotype
 - □ VECs ≠ Aortic endothelial cells
 - □ VECs lining <u>aortic side</u> ≠ <u>ventricular side</u>
 - □ Implications of these differences not yet known

 $^1\mbox{Schoen}$ (2006). Cardiovascular Pathology; Butcher et al. (2006) Arterioscler Throm Vasc Biol

Cellular updates in valves

- II. Valvular Interstitial Cells (VICs) Most prevalent cells & found in all layers (i.e. fibrosa, spongiosa & ventricularis)
 - Described as <u>valve fibroblasts, myofibroblasts or</u> <u>smooth muscle cells</u> (≈ morphologic & functional similarities)
 - ¹Recommended to abandon these terminologies & should be replaced by VICs
 - Specific features at the time of embryonic endothelial-tomesenchymal transformation
 - □ VICs are not smooth muscle cells (SMCs)
 - SMCs Intact basement membrane
 - > VICs Incomplete basement membrane

¹Liu et al. (2007). Am J Pathol

Valvular Interstitial Cells (VICs)

Currently five identifiable phenotypes

- 1. Embryonic progenitor endothelial/mesenchymal (EPE/M) cells
- 2. Progenitor VICs (pVICs)
- 3. Quiescent VICs (qVICs)
- 4. Activated VICs (aVICs)
- 5. Osteoblastic VICs (obVICs)
- Transitions among various phenotypes
 - e.g. qVICs \rightarrow aVICs; pVICs \rightarrow qVICs & so on

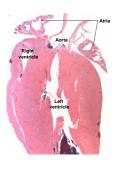
Valvular Interstitial Cells (VICs)¹

Cell type	Location	Functions & Markers
EPE/M cells ²	Embryonic cardiac cushions	Give rise to resident gVICs during the process of valve formation in embryo; Detected by the loss of endothelial & the gain of mesenchymal markers
Progenitor (pVICs)	Bone marrow, circulation, &/or heart valve leaflet	To provide aVICs – Valve repair/remodeling (i.e. another source of aVICs), may be CD34-, CD133-, &/or S100-positive
Quiescent (qVICs)	Heart valve leaflet	Maintain <u>physiologic valve structure & function</u> (inhibition of angiogenesis in the valve leaflets)
Activated (aVICs)	Heart valve leaflet	Valvular injury/disease conditions, qVICs -> aVICs; aVICs - features of myofibroblasts, express <u>c-SMA</u> & other contractile proteins (e.g. striated muscle isoform of myosin heavy chain); repair (proliferation, migration & matrix remodeling)
Osteoblastic (obVICs)	Heart valve leaflet	Regulate – valvular calcification, chondrogenesis & osteogenesis; secrete alkaline phosphatase, osteocalcin, osteopontin & bone sialoprotein

²EPE/M cells = Embryonic progenitor endothelial/mesenchymal cells

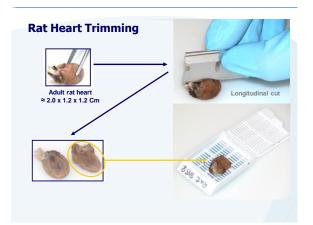
¹Fayet et al. (2007). Cardiovascular Pathology; Liu et al. (2007). Am J Pathol

Valvular Extracellular Matrix (ECM)


- Valvular ECM changes Injury & disease conditions
- Three primary components: Collagens (I, III & V), Elastin & Proteoglycans (PGs – decorin, biglycan, versican & hyaluronan)
- All glycosaminoglycans (GAGs) components of PGs except for Hyaluronan (unsulfated form)
 - Secreted by aVICs
 - Decorin & biglycan (4-sulfated) abundant in tensile loading regions (e.g. chordae tendineae)
 - Hyaluronan & versican (6-sulfated) regions experiencing compression (i.e. free edges – leaflet)
 - Distinctive GAGs changes in drug-induced valvulopathy & other conditions

Rodent heart valves

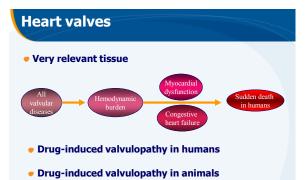
- Histological assessment of <u>all four heart</u> valves Not routinely done in toxicity studies
 - 1. Small size and often missed
 - 2. No consistency Trimming/Sectioning
 - Longitudinal section (most labs): >1 or no valves
 - Combination of longitudinal & transverse sections
 Advantage to diagnose myocardial hypertrophy
 - 3. Hardly request for re-cut of missing valves


Rodent Heart Trimming – Books

"For most studies, the heart is sectioned through its <u>longitudinal axis</u> to include one or ideally both the right and left ventricle, interventricular septum, portions of both atria, and the <u>maior vessels</u> at the base of the heart."

Pathology of the Mouse, Cache River Press, 1999

In small laboratory animals, a longitudinal section through the heart taken perpendicular to the ventricular septum is often sufficient." Handbook of Toxicologic Pathology, Academic Press, 2002


Inconsistent Rodent Heart sections

Rodent heart valves (contd.)

- Generally under-evaluated and underrepresented tissue
- Concentrated in myocardial changes
 > Often ignore the examination of valves

Citation from the book chapter...

"Whereas <u>histopathological examination of the *myocardium is the principle* <u>component of cardiovascular assessment in toxicity studies</u>, histological examination of blood vessels, measurements of heart weight, blood pressure and heart rate as well as electrocardiography are important." *Histopathology of Preclinical Toxicity Studies, Elsevier*, 2007</u>

Drug-induced valvulopathy in humans

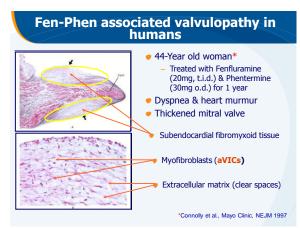
- Anorexigens (anti-obesity drugs) Fenfluramine (Pondimin®), Dexfenfluramine (Redux®)
- Anti-migraine
 Ergot alkaloids Ergotamine,
 Dihydroergotamine, Methysergide
- For Parkinson disease & Hyperprolactinemia Ergot derivatives – Pergolide (Permax®), Cabergoline (Dosinex®)
- For metabolic syndrome & Type 2 diabetes Benfluorex (fenfluramine derivative, Mediator®)
- Recreational Ecstasy
 3, 4-Methylenedioxymethamphetamine (MDMA)

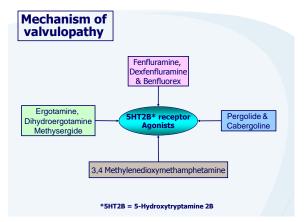
Anorexigen-induced Valvulopathy

- 1997: First report of valvulopathy by *Fen-Phen* (Fenfluramine + Phentermine) in 24 patients – Connolly et al., Mayo Clinic
- Fenfluramine 5HT (5-Hydroxytryptamine) reuptake inhibitor Phentermine – Norepinephrine/dopamine reuptake inhibitor
- Incidence of valvulopathy:
 - 38% (US department of Health & Human services)
 - Other studies: 5-15%
 - Most recent population-based study: 32% (mild aortic regurgitation) (Palmieri et al., AJM 2002)
- Fen-Phen medication for > 6 months increases the risk

Anorexigen-induced Valvulopathy

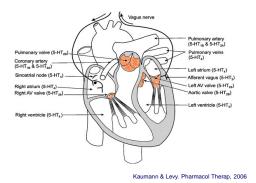
- September 1997: Fenfluramine (Pondimin®) and Dexfenfluramine (Redux®) were withdrawn from the US market
- One of the costliest drug recalls in US history > 21 Billion dollars

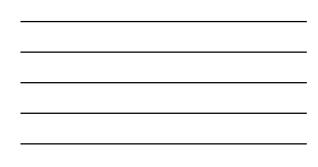

2012: Benfluorex (Mediator[®], Servier)

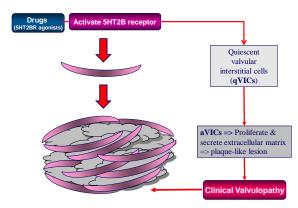

- Fenfluramine derivative, licensed for use by diabetics but widely prescribed in France as a <u>slimming aid</u>
- In 2009, Benfluorex pulled from the European market
 Valvulopathy & Pulmonary hypertension
- 2012 reports
 - > Around 3,100 people required hospitalization
 - At least 1,300 deaths (estimated death toll between 1,000 & 2,000)
 - > Deaths from faulty heart valves among major users
- Its French manufacturer, Servier is being probed on suspicion of dishonest practices & deception

Anorexigen-induced Valvulopathy

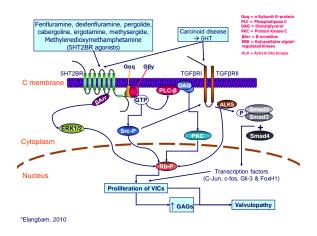
- Distribution:
 - Aortic & mitral valves
 - Little or no effect on tricuspid & pulmonary valves
- Thickening of affected valves due to
 - Proliferation of myofibroblasts*/aVICs
 - Increased extracellular matrix, primarily GAGs (glycosaminoglycans)
- Microscopically similar to:
 - 1. Valvulopathy induced by ergot alkaloids (ergotamine & methysergide)
 - 2. Valvulopathy Carcinoid syndrome


*Connolly et at., 1997; Steffe et al., 1999




Location of 5HT2BR (humans) – All four valves

5HT2BR-related mechanism



5HT2BR stimulation

Does anorexigen exposure produce a <u>distinctive</u> morphological lesion?

- An interesting finding from Dr. McManus's group (St. Paul's Hospital, Canada), 2002
- Quantitative analysis of human heart valves from various disease conditions:
 - 1. Anorexigen-exposed mitral valve
 - 2. Rheumatic Immunologically mediated (group A streptococci?)
 - 3. Carcinoid Tumor secreting 5HT
 - 4. Floppy/Prolapse Mutations in gene encoding fibrilin (Marfan Syndrome)?

Dr. McManus's group concluded.....

Anorexigen-exposed heart valves:

Distinctive microscopic features that separate from normal valves and valve lesions with other pathologies –

Degree of GAGs (glycosaminoglycans) deposition Infiltration of leukocytes Presence of vessels (neovascularization)

PRECLINICAL TOXICOLOGY

No validated preclinical models exist for the anorexigen-induced heart valve lesions

In-vivo models to screen drug-induced valvulopathy

Two Reasons

Valvulopathy liability

- Lessons from Fenfluramine & Dexfenfluramine
- Particularly serotonergic compounds (5HT2B agonists) & for prolonged indication (e.g. Antiobesity)

• GSK compound 'X': 2-Year Oncogenicity Study

- Significant increase in the incidence/severity of mitral valvulopathy in high-dose rats
- Exacerbation?

Compound 'X' - Background

- Sympathomimetic compound treatment of obesity & depression
- Significant increase in the incidence/severity of mitral valvulopathy (endocardial myxomatous change) in high-dose rats
- Microscopically similar to Fen-Phen associated valvulopathy in humans

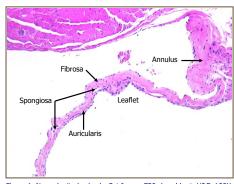


Figure 1. Normal mitral valve leaflet from a 730-day old rat. H&E, 100X

Elangbam et al., Toxicol Pathol 2002

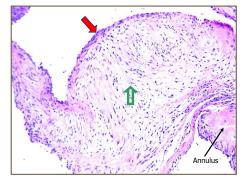


Figure 2. Mitral valve leaflet with valvulopathy from a 684-day old rat. Note marked thickening (solid arrow) of valve leaflet due to fibromyxoid tissue (open arrow) in the subendocardium H&E, 100X.

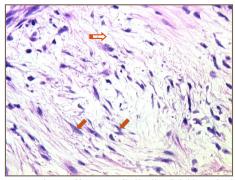
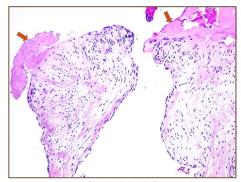
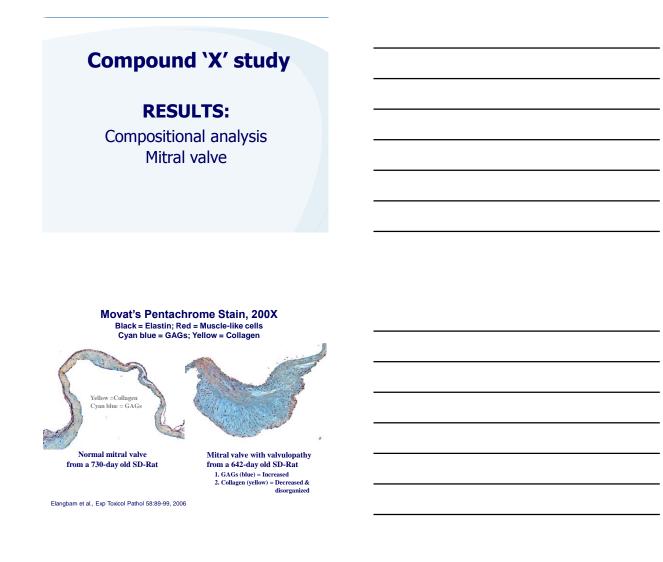
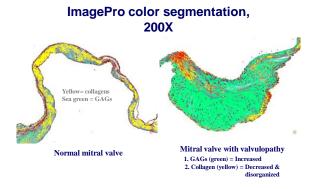
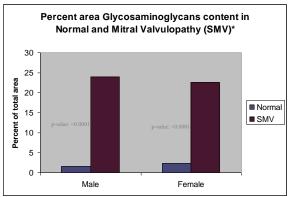


Figure 3. High power of figure 2. Note fibroblast like cells (solid arrows) and adjacent clear extracellular matrix (open arrow). H&E, 400X.

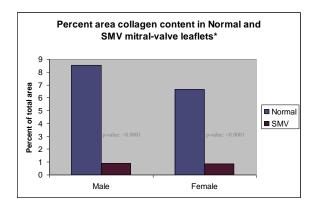




Figure 4. Mitral valve leaflet with valvulopathy from a 643-day old rat. Note Presence of thrombi (solid arrows) on the valve leaflet. H&E, 100X.

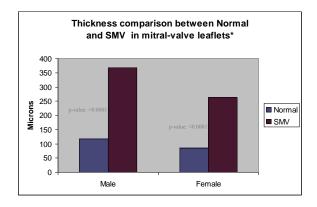
Compound 'X': Mitral valvulopathy (MV) in S-D rats

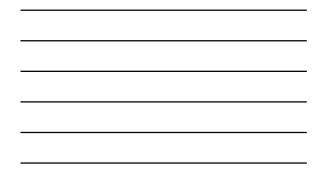

Decided to explore

- Role of 5HT receptors in rat MV?
- Compositional changes (GAGs & Collagen) in rat MV?
- In-vivo models to screen drug-induced valvulopathy?



Elangbarn et al., Exp Toxicol Pathol 58:89-99, 2006



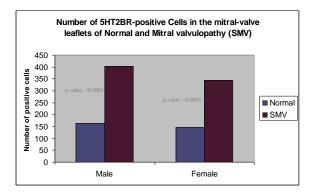


*Elangbam et al., Exp Toxicol Pathol 58:89-99, 2006

*Elangbam et al., Exp Toxicol Pathol 58:89-99, 2006

Immunohistochemistry 5HT2B receptor – Compound X study

5HT2B receptor Immunohistochemistry



Normal mitral valve, 200X

Mitral valve with valvulopathy, 200X

Elangbam et al., Exp Toxicol Pathol 58:89-99, 2006

Elangbarn et al., Exp Toxicol Pathol 58:89-99, 2006

Compound 'X' study – Conclusions

Mitral Valvulopathy in S-D rats

Morphology (H&E)

 Nodular or segmental thickening of affected heart-valves due to subendocardial fibromyxoid tissue

Compositional analysis:

- Significant increase in the GAGs content (quantitative analysis)
- Significant loss/disorganization of collagen
- These changes similar to anorexigen associated valvulopathy in humans

Compound 'X' study – Conclusions

• Immunohistochemistry:

- Significant increase in the number of 5HT2BRpositive cells
- 5HT2BR may be involved (?)

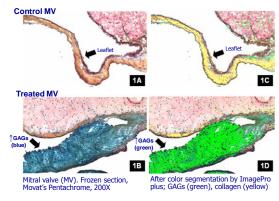
An investigative study in rats

Animal model: 5HT's role in valvulopathy

7-DAY INVESTIGATIVE STUDY

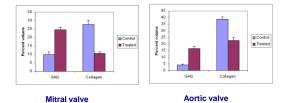
Experimental design

> 24 CD[™] IGS virus antibody free male SD rats, 11 to 12 weeks old, two groups, 12/group

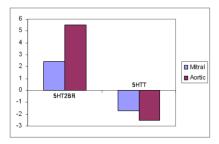

Groups	Treatment & dose
	Sterile water, daily s/c injections for 7 days
Treated	5HT, daily s/c injections (75 mg/kg for the first 3 days and 60 mg/kg thereafter) for 7 days

Mitral & aortic valves – compositional analysis & RT-PCR (5HT2BR & 5HTT)

Results


Mitral & Aortic valves:

- Compositional changes
- Transcriptional 5HT2BR and 5HTT changes



Elangbam et al., Exp Toxicol Pathol 60:253-262, 2008

Compositional Morphometry – Percent volume occupied by GAGs and collagen. Bars represent mean \pm SE. Note increased percent volume of GAGs (p \leq 0.0001) and decreased collagen (p \leq 0.0001)

Elangbam et al., Exp Toxicol Pathol 60:253-262, 2008

TaqMan data – Log 2 relative fold expression. Note up-regulation and down-regulation of 5HT2BR and 5HTT genes, respectively in mitral and aortic valves of 5HT treated SD rats.

Investigative study - Conclusions

- 7-Day 5HT treatment
 - Compositional alterations in GAGs & collagen
 - Correlated with up-regulation of 5HT2BR & downregulation of 5HTT genes
- 5HT2BR & 5HTT Pathogenesis of 5HT-induced vavulopathy
- Animal model for 5HT-induced valvulopathy
 - In vivo-screening for serotonergic drugs with 5HT2BR agonism

Acknowledgements

GSK

- GSK David Krull Immunohistochemistry Joanna Barton Histology, Movat's pentachrome Lawrence Yoon TaqMan, LCM/TaqMan Don Creech TaqMan, LCM/TaqMan Lica Greech

- Lisa Gates
 Histology, Histochemistry
 Robert Geske
 Immunohistochemistry
- Kerry Crabb
- Dr. Melvin Hamlin
- Mary Ellen Sutphin Keith Connelly

Dr. Abraham Nyska
 Peer review

NIEHS

- Dr. Grace Kissling

 Statistical analysis

 Drs. David E. Malarkey & Robert Maronpot Reviews

- College of Veterinary Medicine, NCSU
 Dr. Torrie Crabbs, Former summer GSK Intern (2004)
 NTP study review
 Dr. John Wehe, Former summer GSK Intern (2005)
 Compositional analysis
- Compositional analysis
 Dr. Leah Zadrozny, Former summer GSK Intern (2006)
 -7-Day Investigative study
 Dr. Lauren Job, Former summer GSK intern (2007)
 Compositional analysis