

Development of Humanized Monoclonal Antibodies

K.S. Rao, M.V.Sc., Ph.D., DABT Senior Director Advinus Therapeutics Pvt. Ltd.

Introduction

- Biotechnology is one of the most emerging technologies of the 21st Century
- Transformation of scientific discoveries into applicable human drugs is the most challenging task and requires expert knowledge and enthusiasm

Biological Products

- Vaccines
 - Therapeutic (cancer vaccine)
 - Preventative (childhood vaccines)
- Therapeutic proteins
 - Monoclonal antibodies (anti-TNF- Infliximab, Enbrel)
 - Interferons and interleukins (IFN-alpha)
 - Growth factors (erythropoietin, G-CSF)
 - Enzymes (asparaginase, rasburicase)
 - Thrombolytics (streptokinase)

Monoclonal Antibodies - Background

- 1896 Paul Ehrlich (1908 Nobel Prize) side chain theory
- 1936 Heidelberger and Kendall Isolated antibodies
- 1959 Edelman and Porter (1972 Nobel Prize) – antibody structure
- 1975 Kohler and Milstein (1984 Nobel Prize) – hybridoma technique – B cells fused with tumor cells – production of any type of mAbs

Classes of Monoclonal Antibodies - Currently Licensed

- Antitumoural (cytotoxic) antibodies
 - Avastin® (bevacizumab), Erbitux® (cetuximab), Herceptin® (trastuzumab), MabCampath® (alemtuzumab), MabThera® (rituximab).
- Immunomodulators
 - Humira® (adalimumab), Remicade® (infliximab), Raptiva® (efalizumab), Simulect®; (basiliximab), Zenapax® (daclizumab).
- Pathogen-specific mAbs
 - Synagis® (palivizumab)
- Others
 - ReoPro® (abciximab), CEA-Scan® (arcitumomab), Leukoscan® (sulesomab)

Monoclonal Antibodies - highly complex molecules

- High molecular weight
- Complexity
 - (primary / secondary / tertiary / quarternay structure;
 post-translational modifications)
- Heterogeneity (drug substance, drug product)
- Process- and product-related impurities
- Low stability of drug substance / drug product
- Species specificity
- Immunogenicity

Issues with Monoclonal Antibodies

Quality

- - impurities
- batch inconsistency
- - contaminants
- microheterogeneity
- - fragments

Preclinical

- - tissue cross-reactivity?
- toxicity?
- - immunotoxicity?

Central Apect: mAbs are species-specific.

 A relevant species is one in which the test material is pharmacologically active due to the expression of the receptor or an epitope (in the case of monoclonal antibodies)*.

Non-Clinical considerations

- Monoclonal antibodies can cross-react
 - cross-reactivity with structurally related epitopes / receptors?
 e.g., EGFR HER2
 - expression of epitope on "non-target" tissues?
- Consequence of non-target tissue expression / crossreactivity?
- Monoclonal antibodies can have differential effects at lower doses
 - classical approach: Test a multiple of the clinical target dose
 in the animal model => safety margin
 - MAbs: Test a multiple of the clinical target dose in the animal model => safety margin
 - and Test also lower doses to be studied in humans

TG 1412

- 1. TG1412 is a "molecule targeting agent"
- 2. The target is CD28, a molecule on the surface of lymphocytes that is deeply related to immunity and inflammatory reaction
- 3. The agent is a monoclonal antibody (mab) that combines with CD28
- 4. The agent was expected to stimulate lymphocytes and to induce a substance that suppresses inflammation for treating intractable rheumatism and chronic leukemia
- 5. Conventionally, drugs are mainly chemical, but now the trend is shifting to development of biological substances
- 6. TeGenero (Germany) developed the agent
- 7. CD28 homology human cynomolgus: 100% (extracellular domain)

Lessons from the TGN1412 case

- Data on downstream effects with TGN1412 in cynomolgus monkey were presented
- Fist-in-man trial was authorized by MHRA (UK)
- TGN1412 for the first human trial in London on 13 March 2006
- PAREXEL, a CRO that conducted the trial in UK
- TGN1412 dose administered was <u>one five</u> <u>hundredth</u> of that proved safe in animal tests
- Right after the six volunteers took the agent, they all started to complained:
 - of body ache and difficulty in breathing and fell unconscious
 - Within an hour they were admitted to ICU for multiple organ failure (MOF) and needed to be on ventilator.

Lesions from the TGN1412 case

- Predictivity of animal data not 100% (estimates: 70-80%)
- Nevertheless non-clinical data of highest importance
- Not all MAbs are that dangerous, still major "drugs of hope"
- Definition of "high-risk" mAbs for which enhanced precautions need to be employed:
 - extended pre-clinical development before human testing
 - sequential inclusion of subjects into phase I first-inman trial

High-risk Monoclonal Antibodies

Criterion 1:

- The mAb employs a new mechanism of action
 - mAbs interfering with "master switches" of the immune system
 - Inducers / modulators of pleiotropic cytokines (IFNγ, IFNα, IL-10)

Criterion 2:

- The mAb addresses a target that lacks appropriate animal models
 - (sub-) epitopes that are only present in humans
 - No surrogate model exists
 - Interference with signaling pathways with human-specific properties

Criterion 3:

- The mAb comprises a new type of engineered structural format
 - Engineered Fc parts
 - Divalent (bispecific) antibodies etc.

Differences Between Traditional Drugs And Biologics

- Small molecules (drugs)
 - Chemically synthesized
 - Low molecular weight
 - Generally active in many species
 - Generally no immunogenicity
 - Metabolism
 - Toxicity from parent or metabolite

- Biologics
- From living cells
- High molecular weight
- Highly targeted
- Responsive (relevant)
 and non-responsive
 species
- Immunogenicity
- Proteolytic degradation
- Exaggerated pharmacology

Documents Specific to the Preclinical Development of Biologics

- ICH S6: Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals (1997)
- Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use (1997)

Concepts Unique to Biologics

- Relevant species
- Tissue cross-reactivity
- Immunogenicity

Relevant Species

- "A relevant species is one in which the test material is pharmacologically active due to the expression of a receptor or an epitope (in the case of monoclonal antibodies)."
- "Toxicity studies in non-relevant species may be misleading and are discouraged."

[ICH S6]

Defining the Relevant Species

- Functional pharmacology studies
- Tissue cross-reactivity to assess binding of monoclonal antibodies (mAbs) to nonhuman tissue

Immunogenicity

- Many biologics elicit an immune response in animals
- Preclinical and clinical impact
 - Neutralize activity (interfere with binding or increase elimination)
 - Sustain activity (decrease elimination)
 - Cross-react with endogenous compounds
- Included as an endpoint in toxicology studies
- Animal findings not necessarily predictive of human

Goals of Preclinical Safety Evaluation

- Recommend initial safe starting dose and
- safe dose-escalation scheme in humans
- Identify potential target organ(s) of toxicity
- Identify appropriate parameters for clinical monitoring
- Identify "at risk" patient populations

Preclinical Development

- Activities of this phase are aimed at generating enough information about safety and disposition of the drug for safety to humans
 - Efficacy
 - Toxicology
 - Safety pharmacology
 - Drug Metabolism

Establish Efficacy

- Having established that a group of molecules interact with the biological target in the desired way, it is important to understand whether an effect can be created *In Vivo*, in an appropriate animal model or against target cellular organisms
- Sometimes, it is only possible to establish efficacy against an *In Situ* model using isolated tissues

Establish Dose Response

 Using the biological model, it is important to establish how the effect varies with dose and how a group of compounds might differ in terms of relative potency

Early Questions?

- Can the parent drug be measured in biological materials over the right concentration range under GLP standards
- Is the drug stable in biological matrices under normal handling and storage conditions?
- Is the drug stable in the formulations to be used?
- Is the drug metabolized and if so, to what?
- Does the drug cross intestinal epithelium as predicted by Caco-2 cell permeation studies?
- What is the plasma half-life in rats and monkeys following single dose intravenous administration?

Early Questions?

- Dos the drug bind to plasma proteins?
- Does he drug inhibit any of the drug metabolizing enzymes (CYPs)?
- Is the drug absorbed if given orally? If so, what is it's bioavailability?
- What should be the species for subchronic studies based on metabolism and pharmackinetic considerations?
- At what dose does the drug show limiting toxicity?
- What are the target organs?

Preclinical Studies Needed for a Phase 1 Study

Study	Biologic	Small Molecules
Pharmacology	Yes	YES
Safety Pharmacology	Maybe	Yes
	(usually incorporated in general toxicology study)	(usually standard models)
Toxicology	Yes	Yes
(acute/repeat dose)	(1 species acceptable)	(2 species)
Toxicology(acute/rep	Yes	Yes
eat dose)	(1 species acceptable)	(2 species)
Genotoxicity	Generally Not Required	Yes

Preclinical Studies Needed for a Phase 1 Study

Study	Biologic	Small Molecules
Tissue cross-reactivity	Yes (monoclonal antibodies)	Not Required
Local Tolerance	Yes (incorporated in toxicology study)	Yes

Toxicology Studies Needed for Licensure Biologics vs. Small Molecules

Toxicity Testing	BLA Approval	NDA Approval
ReproductiveToxicity	-Relevant species -Embryo-fetal development -Select species closest to human physiology	Performed in at least 2 species, standard models of rat and rabbit
Carcinogenicity	-Interested in effects on cell proliferation, tumor promotion- In vitro and in vivo studies (alternative models)	-Interested in direct interaction with DNA-Performed in standard models (rodent), sometimes alternative models
Immunotoxicity	Interested in systemic exposure of biologic and consequence of antiproduct antibodies	Centers on hypersensitivity and modification of immune system as an adverse event

Mutagenicity

- Assays designed to detect substances that directly interact with DNA and induce gene mutations, chromosome aberrations and/or DNA damage
- Small molecules
 - Standard 3 assays performed: Ames, CHO and Mouse Micronucleus
- Biologics
 - Genotoxicity assays typically not performed
 - Not expected that proteins would interact with DNA
 - Manufacturing involves physical separation as opposed to the introduction of organic chemicals
- Presence of organic impurities or organic linkers might warrant genotoxicity testing

Safety Pharmacology

- Safety pharmacology studies asses the potential undesirable pharmacodynamic effects of a substance on physiological functions
- Core battery: CNS, cardiovascular and respiratory systems
- For highly targeted biologics, safety pharmacology endpoints may be included in toxicology or pharmacodynamic studies

ADME Studies

- ADME studies are not strictly required to perform Phase I. However, some of the studies, i.e. bioavailability, may provide useful information at an early stage in development
- In Vivo metabolism studies should be considered where metabolism is found to be extensive and when there are strong possibilities of interspecies variation in toxicity and ADME

Single Dose Toxicity Study

- An evaluation of acute toxicity is normally required in two mammalian species prior to the first human exposure
- A dose escalation study is considered acceptable in dogs
- Intended clinical route of administration
- Control and three graded doses are used with 5 rats/group/sex
- Monitor conventional parameters

Repeat Dose Toxicity

- Dose range finding studies (7-day) precede the short-term repeat dose toxicity studies
- Generally a 28-day study in two species with recovery groups
- Toxicokinetics and immunotoxicity must be included

Questions to be Answered by Preclinical Studies Preclinical Studies

- What is the relationship of the dose to the
- biologic activity?
- What is the relationship of the dose to the
- toxicity?
- Does the route and/or schedule affect
- activity/toxicity?
- What risks can be identified for the clinical
- trial?

Reproductive Toxicology Biologics

- Studies defined in the ICH S5 and M3 documents are not the standard default
- Embryo-fetal toxicity studies are conducted for most compounds
- Need for fertility and pre-and post-natal development influenced by product, patient population and indication
- Timing of studies to clinical trials is flexible
- Limitations due to animal models (relevant species and immunogenicity)

Carcinogenicity Biologics vs. Small Molecules

- Chronic administration (2 years) to rodents and assessment of tumor formation
- Small Molecules
 - Performed for all products that are expected to be administered continually for 6 months to humans
 - 2 studies, mouse and rat
 - Due upon submission of NDA
- Biologics
 - Typical carcinogenicity studies not usually performed for biologics, unless scientifically justified
 - Limitations: animal models and immunogenicity
 - Biologics may increase cellular proliferation and promote tumor growth
 - In vitro and in vivo studies to assess growth of tumor and normal cells

Where Do I Go for Help?

- International
 - International Conference on Harmonisation(ICH) Documents
 - http://www.ich.org/cache/compo/276-254-1.html
- CDER/CBER specific
- Internally generated documents submitted for public comment
- http://www.fda.gov/cder/guidance/index.htm
- http://www.fda.gov/cber/guidelines.htm

ICH Documents: Relevant to Biologics

- ICH S6: Preclinical Safety Evaluation of Biotechnology-derived Pharmaceuticals
- ICH S5A &B: Detection of Toxicity to Reproduction for Medicinal Products
- ICH S7A: Safety Pharmacology Studies for Human Pharmaceuticals
- ICH M3: Nonclinical Safety Studies for the Conduct of Human Clinical Trials
- ICH Q5E: Comparability of Biotechnological/Biological Products Subject to Changes in their Manufacturing Process

Take Home Points

- Biologics and small molecules are inherently different
 - Microheterogeneity/ comparability
 - Relevant species
 - Immunogenicity
 - Clearance
- These differences are reflected in the nonclinical developmental strategies
- "One size fits all approach" not valid
- Guidances for nonclinical development can be found on CDER and CBER websites